ترغب بنشر مسار تعليمي؟ اضغط هنا

Precision measurement of tribocharging in acoustically levitated sub-millimeter grains

90   0   0.0 ( 0 )
 نشر من قبل Melody Xuan Lim
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Contact electrification of dielectric grains forms the basis for a myriad of physical phenomena. However, even the basic aspects of collisional charging between grains are still unclear. Here we develop a new experimental method, based on acoustic levitation, which allows us to controllably and repeatedly collide two sub-millimeter grains and measure the evolution of their electric charges. This is therefore the first tribocharging experiment to provide complete electric isolation for the grain-grain system from its surroundings. We use this method to measure collisional charging rates between pairs of grains for three different material combinations: polyethylene-polyethylene, polystyrene-polystyrene, and polystyrene-sulfonated polystyrene. The ability to directly and noninvasively collide particles of different constituent materials, chemical functionality, size, and shape opens the door to detailed studies of collisional charging in granular materials.

قيم البحث

اقرأ أيضاً

We investigate a model system for inertial many-particle clustering, in which sub-millimeter objects are acoustically levitated in air. Driven by scattered sound, levitated grains self-assemble into a monolayer of particles, forming mesoscopic granul ar rafts with both an acoustic binding energy and a bending rigidity. Detuning the acoustic trap can give rise to stochastic forces and torques that impart angular momentum to levitated objects, activating soft modes in the rotating elastic membrane. As the angular momentum of a quasi-two-dimensional granular raft is increased, the raft deforms from a disk to an ellipse, eventually pinching off into multiple separate rafts, in a mechanism that resembles the break-up of a liquid drop. We extract the raft effective surface tension and bulk modulus, and show that acoustic forces give rise to elastic moduli that scale with the raft size. We also show that the raft size controls the microstructural basis of plastic deformation, resulting in a transition from fracture to ductile failure.
Observations of flowing granular matter have suggested that same-material tribocharging de- pends on particle size, rendering large grains positive and small ones negative. Models assuming the transfer of trapped electrons can explain this, but so fa r have not been validated. Tracking individual grains in an electric field, we show quantitatively that charge is transferred based on size between materially identical grains. However, the surface density of trapped electrons, measured independently by thermoluminescence techniques, is orders of magnitude too small to account for the scale of charge transferred. This suggests that another negatively charged species, such as ions, is responsible.
Nanomechanical resonators are widely operated as force and mass sensors with sensitivities in the zepto-Newton and yocto-gram regime, respectively. Their accuracy, however, is usually undermined by high uncertainties in the effective mass of the syst em, whose estimation is a non-trivial task. This critical issue can be addressed in levitodynamics, where the nanoresonator typically consists of a single silica nanoparticle of well-defined mass. Yet, current methods assess the mass of the levitated nanoparticles with uncertainties up to a few tens of percent, therefore preventing to achieve unprecedented sensing performances. Here, we present a novel measurement protocol that uses the electrical field from a surrounding plate capacitor to directly drive a charged optically levitated particle in moderate vacuum. The developed technique estimates the mass within a statistical error below 1% and a systematic error of 2%, and paves the way toward more reliable sensing and metrology applications of levitodynamics systems.
160 - Fang Xiong , Peiran Yin , Tong Wu 2021
Levitated oscillators with millimeter or sub-millimeter size are particularly attractive due to their potential role in studying various fundamental problems and practical applications. One of the crucial issues towards these goals is to achieve effi cient measurements of oscillator motion, while this remains a challenge. Here we theoretically propose a lens-free optical detection scheme, which can be used to detect the motion of a millimeter or sub-millimeter levitated oscillator with a measurement efficiency close to the standard quantum limit with a modest optical power. We demonstrate experimentally this scheme on a 0.5 mm diameter micro-sphere that is diamagnetically levitated under high vacuum and room temperature, and the thermal motion is detected with high precision. Based on this system, an estimated acceleration sensitivity of $9.7 times 10^{-10}rm g/sqrt{Hz}$ is achieved, which is more than one order improvement over the best value reported by the levitated mechanical system. Due to the stability of the system, the minimum resolved acceleration of $3.5times 10^{-12}rm g$ is reached with measurement times of $10^5$ s. This result is expected to have potential applications in the study of exotic interactions in the millimeter or sub-millimeter range and the realization of compact gravimeter and accelerometer.
By rigorously accounting for mesoscale spatial correlations in donor/acceptor surface properties, we develop a scale-spanning model for same-material tribocharging. We find that mesoscale correlations affect not only the magnitude of charge transfer but also the fluctuations-suppressing otherwise overwhelming charge-transfer variability that is not observed experimentally. We furthermore propose a generic theoretical mechanism by which the mesoscale features might emerge, which is qualitatively consistent with other proposals in the literature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا