ترغب بنشر مسار تعليمي؟ اضغط هنا

Bounding the entanglement of N qubits with only four measurements

106   0   0.0 ( 0 )
 نشر من قبل Seyed Mohammad Hashemi Rafsanjani
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a new measure for the genuinely N-partite (all-party) entanglement of N-qubit states using the trace distance metric, and find an algebraic formula for the GHZ-diagonal states. We then use this formula to show how the all-party entanglement of experimentally produced GHZ states of an arbitrary number of qubits may be bounded with only four measurements.



قيم البحث

اقرأ أيضاً

346 - D. Li , X. Li , H. Huang 2009
Recently, Coffman, Kundu, and Wootters introduced the residual entanglement for three qubits to quantify the three-qubit entanglement in Phys. Rev. A 61, 052306 (2000). In Phys. Rev. A 65, 032304 (2007), we defined the residual entanglement for $n$ q ubits, whose values are between 0 and 1. In this paper, we want to show that the residual entanglement for $n$ qubits is a natural measure of entanglement by demonstrating the following properties. (1). It is SL-invariant, especially LU-invariant. (2). It is an entanglement monotone. (3). It is invariant under permutations of the qubits. (4). It vanishes or is multiplicative for product states.
Beyond the simplest case of bipartite qubits, the composite Hilbert space of multipartite systems is largely unexplored. In order to explore such systems, it is important to derive analytic expressions for parameters which characterize the systems st ate space. Two such parameters are the degree of genuine multipartite entanglement and the degree of mixedness of the systems state. We explore these two parameters for an N-qubit system whose density matrix has an X form. We derive the class of states that has the maximum amount of genuine multipartite entanglement for a given amount of mixedness. We compare our results with the existing results for the N=2 case. The critical amount of mixedness above which no N-qubit X-state possesses genuine multipartite entanglement is derived. It is found that as N increases, states with higher mixedness can still be entangled.
283 - Rui Chao , Ben W. Reichardt 2017
Noise rates in quantum computing experiments have dropped dramatically, but reliable qubits remain precious. Fault-tolerance schemes with minimal qubit overhead are therefore essential. We introduce fault-tolerant error-correction procedures that use only two ancilla qubits. The procedures are based on adding flags to catch the faults that can lead to correlated errors on the data. They work for various distance-three codes. In particular, our scheme allows one to test the [[5,1,3]] code, the smallest error-correcting code, using only seven qubits total. Our techniques also apply to the [[7,1,3]] and [[15,7,3]] Hamming codes, thus allowing to protect seven encoded qubits on a device with only 17 physical qubits.
We analyze entanglement and nonlocal properties of the convex set of symmetric $N$-qubits states which are diagonal in the Dicke basis. First, we demonstrate that within this set, positivity of partial transposition (PPT) is necessary and sufficient for separability --- which has also been reported recently in https://doi.org/10.1103/PhysRevA.94.060101 {Phys. Rev. A textbf{94}, 060101(R) (2016)}. Further, we show which states among the entangled DS are nonlocal under two-body Bell inequalities. The diagonal symmetric convex set contains a simple and extended family of states that violate the weak Peres conjecture, being PPT with respect to one partition but violating a Bell inequality in such partition. Our method opens new directions to address entanglement and non-locality on higher dimensional symmetric states, where presently very few results are available.
We single out a class of states possessing only threetangle but distributed all over four qubits. This is a three-site analogue of states from the $W$-class, which only possess globally distributed pairwise entanglement as measured by the concurrence . We perform an analysis for four qubits, showing that such a state indeed exists. To this end we analyze specific states of four qubits that are not convexly balanced as for $SL$ invariant families of entanglement, but only affinely balanced. For these states all possible $SL$-invariants vanish, hence they are part of the $SL$ null-cone. Instead, they will possess at least a certain unitary invariant. As an interesting byproduct it is demonstrated that the exact convex roof is reached in the rank-two case of a homogeneous polynomial $SL$-invariant measure of entanglement of degree $2m$, if there is a state which corresponds to a maximally $m$-fold degenerate solution in the zero-polytope that can be combined with the convexified minimal characteristic curve to give a decomposition of $rho$. If more than one such state does exist in the zero polytope, a minimization must be performed. A better lower bound than the lowest convexified characteristic curve is obtained if no decomposition of $rho$ is obtained in this way.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا