ﻻ يوجد ملخص باللغة العربية
Noise rates in quantum computing experiments have dropped dramatically, but reliable qubits remain precious. Fault-tolerance schemes with minimal qubit overhead are therefore essential. We introduce fault-tolerant error-correction procedures that use only two ancilla qubits. The procedures are based on adding flags to catch the faults that can lead to correlated errors on the data. They work for various distance-three codes. In particular, our scheme allows one to test the [[5,1,3]] code, the smallest error-correcting code, using only seven qubits total. Our techniques also apply to the [[7,1,3]] and [[15,7,3]] Hamming codes, thus allowing to protect seven encoded qubits on a device with only 17 physical qubits.
A quantum computer will use the properties of quantum physics to solve certain computational problems much faster than otherwise possible. One promising potential implementation is to use superconducting quantum bits in the circuit quantum electrodyn
Steanes seven-qubit quantum code is a natural choice for fault-tolerance experiments because it is small and just two extra qubits are enough to correct errors. However, the two-qubit error-correction technique, known as flagged syndrome extraction,
The development of robust architectures capable of large-scale fault-tolerant quantum computation should consider both their quantum error-correcting codes, and the underlying physical qubits upon which they are built, in tandem. Following this desig
Experimental realization of stabilizer-based quantum error correction (QEC) codes that would yield superior logical qubit performance is one of the formidable task for state-of-the-art quantum processors. A major obstacle towards realizing this goal
To implement fault-tolerant quantum computation with continuous variables, the Gottesman--Kitaev--Preskill (GKP) qubit has been recognized as an important technological element. We have proposed a method to reduce the required squeezing level to real