ﻻ يوجد ملخص باللغة العربية
In the mapping of the local ISM it is of some interest to know where the first indications of the boundary of the Local Bubble can be measured. The Hipparcos distances combined to B-V photometry and some sort of spectral classification permit mapping of the spatial extinction distribution. Photometry is available for almost the complete Hipparcos sample and Michigan Classification is available for brighter stars south of delta = +5 deg (1900). For the northern and fainter stars spectral types, e.g. the HD types, are given but a luminosity class is often missing. The B-V photometry and the parallax do, however, permit a dwarf/giant separation due to the value of the slope of the reddening vector compared to the gradient of the main sequence in a color magnitude diagram, in the form: B-V vs. M_V+A_V = V+5(1+log(pi)), together with the rather shallow extinction present in the Hipparcos sample. We present the distribution of median A_V(l, b) for stars with Hipparcos 2 distances less than 55 pc. The northern part of the first and second quadrant has most extinction, up to 0.2 mag and the southern part of the third and fourth quadrant the slightest extinction, 0.05 mag. The boundary of the extinction minimum appears rather coherent on an angular resolution of a few degrees
We have examined UV spectra recorded by the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope for three stars, HD32309, 41 Ari, and $eta$~Tel, that are located well inside the boundary of the Local Hot Bubble in our search for
We investigate the linear polarization produced by interstellar dust aligned by the magnetic field in the solar neighborhood (d< 50 pc). We also look for intrinsic effects from circumstellar processes, specifically in terms of polarization variabilit
The Sun is embedded in the so-called Local Bubble (LB) -- a cavity of hot plasma created by supernova explosions and surrounded by a shell of cold, dusty gas. Knowing the local distortion of the Galactic magnetic field associated with the LB is criti
The Sun lies in the middle of an enormous cavity of a million degree gas, known as the Local Bubble. The Local Bubble is surrounded by a wall of denser neutral and ionized gas. The Local Bubble extends around 100 pc in the plane of Galaxy and hundred
The magnetic field in the local interstellar medium does not follow the large-scale Galactic magnetic field. The local magnetic field has probably been distorted by the Local Bubble, a cavity of hot ionized gas extending all around the Sun and surrou