ترغب بنشر مسار تعليمي؟ اضغط هنا

The Local Bubble: a magnetic veil to our Galaxy

82   0   0.0 ( 0 )
 نشر من قبل Marta Alves
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The magnetic field in the local interstellar medium does not follow the large-scale Galactic magnetic field. The local magnetic field has probably been distorted by the Local Bubble, a cavity of hot ionized gas extending all around the Sun and surrounded by a shell of cold neutral gas and dust. However, so far no conclusive association between the local magnetic field and the Local Bubble has been established. Here we develop an analytical model for the magnetic field in the shell of the Local Bubble, which we represent as an inclined spheroid, off-centred from the Sun. We fit the model to Planck dust polarized emission observations within 30 deg of the Galactic poles. We find a solution that is consistent with a highly deformed magnetic field, with significantly different directions towards the north and south Galactic poles. This work sets a methodological framework for modelling the three-dimensional (3D) structure of the magnetic field in the local interstellar medium, which is a most awaited input for large-scale Galactic magnetic field models.



قيم البحث

اقرأ أيضاً

63 - R. Skalidis , V. Pelgrims 2019
It has not been shown so far whether the diffuse Galactic polarized emission at frequencies relevant for cosmic microwave background (CMB) studies originates from nearby or more distant regions of our Galaxy. This questions previous attempts that hav e been made to constrain magnetic field models at local and large scales. The scope of this work is to investigate and quantify the contribution of the dusty and magnetized local interstellar medium to the observed emission that is polarized by thermal dust. We used stars as distance candles and probed the line-of-sight submillimeter polarization properties by comparing the emission that is polarized by thermal dust at submillimeter wavelengths and the optical polarization caused by starlight. We provide statistically robust evidence that at high Galactic latitudes ($|b| geq 60^circ$), the $353$ GHz polarized sky as observed by textit{Planck} is dominated by a close-by magnetized structure that extends between $200$ and $300$ pc and coincides with the shell of the Local Bubble. Our result will assist modeling the magnetic field of the Local Bubble and characterizing the CMB Galactic foregrounds.
Optical and infrared continuum polarization from the interstellar medium is known to generally be due to irregular dust grains aligned with the magnetic field. This provides an important tool to probe the geometry and strength of those fields, partic ularly if the variations in the grain alignment efficiencies can be understood. Here, we examine polarization variations observed throughout the wall of the Local Bubble, using a large polarization survey of the North Galactic cap (textit{b}$>30^circ$) from citet{berdyugin2014}. These data are analyzed together with archival photometric and spectroscopic data along with the mapping of the Local Bubble by citet{lallement2003}. We can model the observational data by assuming that the alignment driving mechanism is due to the radiation from the surrounding star field. In particular we find that the fractional polarization is dominated by the light from the OB associations within 150 pc of the sun, but is largely insensitive to the radiation field from red field stars. This behavior is consistent with the expected wavelength dependence of radiative grain alignment theory. We also probe the relative strength of the magnetic field in the wall of the Local Bubble using the Davis-Chandrasekhar-Fermi method. We find evidence for a systematically varying field strength distribution, where the variations in the field are correlated with the variations in grain alignment efficiency, indicating that the relatively higher field strength regions might represent a compression of the wall by the interaction of the outflow in the Local Bubble and the opposing flows by the surrounding OB associations.
The halo and disc globular cluster population can be used as a tracer of the primordial epochs of the Milky Way formation. In this work, literature data of globular clusters ages, chemical abundances, and structural parameters are studied, explicitly focussing on the origin of the known split in the age-metallicity relation of globular clusters. When the alpha-element abundances, which are less strongly affected by the internal light-element spread of globular clusters (Si, Ca), are considered, a very low observational scatter among metal-poor clusters is observed. A plateau at [SiCa/Fe]~0.35 dex, with a dispersion of only 0.05 dex is observed up to a metallicity of about -0.75 dex. Only a few metal-poor clusters in this metallicity interval present low [SiCa/Fe] abundances. Moreover, metal-rich globular clusters show a knee in the [alpha/Fe] versus [Fe/H] plane around [Fe/H] -0.75 dex. As a consequence, if a substantial fraction of galactic globular clusters has an external origin, they have to be mainly formed either in galaxies that are massive enough to ensure high levels of [alpha/Fe] element abundances even at intermediate metallicity, or in lower mass dwarf galaxies accreted by the Milky Way in their early phases of formation. Finally, clusters in the metal-poor branch of the AMR present an anti-correlation of [SiCa/Fe] with the total cluster magnitude, while this is not the case for metal-rich branch clusters. In addition, this lack of faint high-alpha clusters in the young metal-poor population is in contrast with what is observed for old and more metal-poor clusters, possibly reflecting a higher heterogeneity of formation environments at lower metallicity. Accretion of high-mass satellites, as a major contribution to the current Milky Way globular cluster system both in the metal-poor and the metal-intermediate regime is compatible with the observations.
Aims. We present the first high-resolution non-equilibrium ionization simulation of the joint evolution of the Local Bubble (LB) and Loop I superbubbles in the turbulent supernova-driven interstellar medium (ISM). The time variation and spatial distr ibution of the Li-like ions Civ, Nv, and Ovi inside the LB are studied in detail. Methods. This work uses the parallel adaptive mesh refinement code EAF-PAMR coupled to the newly developed atomic and molecular plasma emission module E(A+M)PEC, featuring the time-dependent calculation of the ionization structure of H through Fe, using the latest revision of solar abundances. The finest AMR resolution is 1 pc within a grid that covers a representative patch of the Galactic disk (with an area of 1 kpc^2 in the midplane) and halo (extending up to 10 kpc above and below the midplane). Results. The evolution age of the LB is derived by the match between the simulated and observed absorption features of the Li-like ions Civ, Nv, and Ovi . The modeled LB current evolution time is bracketed between 0.5 and 0.8 Myr since the last supernova reheated the cavity in order to have N(Ovi) < 8 times 10^12 cm-2, log[N(Civ) /N(Ovi) ] < -0.9 and log[N(Nv) /N(Ovi) ] < -1 inside the simulated LB cavity, as found in Copernicus, IUE, GHRS-IST and FUSE observations.
Strong winds and ultraviolet (UV) radiation from O-type stars disrupt and ionize their molecular core birthplaces, sweeping up material into parsec-size shells. Owing to dissociation by starlight, the thinnest shells are expected to host low molecula r abundances and therefore little star formation. Here, we expand previous maps taken with the IRAM 30m telescope and present square-degree 12CO and 13CO (J=2-1) maps of the wind-driven Veil bubble that surrounds the Trapezium cluster and its natal Orion molecular core (OMC). Although widespread and extended CO emission is largely absent from the Veil, we show that several CO globules exist and are embedded in the [CII]158um-bright shell that confines the bubble. This includes the first detection of quiescent CO at negative LSR velocities in Orion. Given the harsh UV irradiation conditions in this translucent material, the detection of CO globules is surprising. These globules are small (R=7,100 AU), not massive (M=0.3M_Sun), and are moderately dense: n_ H=4x10^4 cm^-3 (median values). They are confined by the external pressure of the shell, P_ext/k~10^7 cm^-3 K, and are likely magnetically supported. They are either transient objects formed by instabilities or have detached from pre-existing molecular structures, sculpted by the passing shock associated with the expanding shell and by UV radiation from the Trapezium. Some represent the first stages in the formation of small pillars, others of isolated small globules. Although their masses do not suggest they will form stars, one globule matches the position of a known YSO. The lack of extended CO in the Veil shell demonstrates that feedback from massive stars expels, agitates, and reprocesses most of the disrupted molecular cloud gas, thereby limiting the star-formation rate in the region. The presence of globules is a result of this feedback.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا