ﻻ يوجد ملخص باللغة العربية
The Sun is embedded in the so-called Local Bubble (LB) -- a cavity of hot plasma created by supernova explosions and surrounded by a shell of cold, dusty gas. Knowing the local distortion of the Galactic magnetic field associated with the LB is critical for the modeling of interstellar polarization data at high Galactic latitudes. In this his paper, we relate the structure of the Galactic magnetic field on the LB scale to three-dimensional (3D) maps of the local interstellar medium (ISM). First, we extracted the geometry of the LB shell, its inner surface, in particular from 3D dust extinction maps of the local ISM. We expanded the shell inner surface in spherical harmonics, up to a variable maximum multipole degree, which enabled us to control the level of complexity for the modeled surface. Next, we applied an analytical model for the ordered magnetic field in the shell to the modeled shell surface. This magnetic field model was successfully fitted to the textit{Planck} 353~GHz dust polarized emission maps over the Galactic polar caps. For each polar cap, the direction of the mean magnetic field derived from dust polarization (together with the prior that the field points toward longitude $90^circ pm 90^circ$) is found to be consistent with the Faraday spectra of the nearby diffuse synchrotron emission. Our work presents a new approach to modeling the local structure of the Galactic magnetic field. We expect our methodology and our results to be useful both in modeling the local ISM as traced by its different components and in modeling the dust polarized emission, which is a long-awaited input for studies of the polarized foregrounds for cosmic microwave background.
It has not been shown so far whether the diffuse Galactic polarized emission at frequencies relevant for cosmic microwave background (CMB) studies originates from nearby or more distant regions of our Galaxy. This questions previous attempts that hav
We present a new high signal-to-noise (S/N) observations of the Diffuse Interstellar Bands (DIBs) in the Local Bubble and its surroundings. We observed 432 sightlines and obtain the equivalent widths of $lambda$5780 and $lambda$5797 AA DIBs up to dis
Rotation measures of pulsars and extragalactic point sources have been known to reveal large-scale antisymmetries in the Faraday rotation sky with respect to the Galactic plane and halo that have been interpreted as signatures of the mean magnetic fi
In the mapping of the local ISM it is of some interest to know where the first indications of the boundary of the Local Bubble can be measured. The Hipparcos distances combined to B-V photometry and some sort of spectral classification permit mapping
Recently Squire & Hopkins showed that charged dust grains moving through magnetized gas under the influence of any external force (e.g. radiation pressure, gravity) are subject to a spectrum of instabilities. Qualitatively distinct instability famili