ﻻ يوجد ملخص باللغة العربية
The thermal evolution of young neutron stars (NSs) reflects the neutrino emission properties of their cores. Heinke et al. (2010) measured a 3.6+/-0.6% decay in the surface temperature of the Cassiopeia A (Cas A) NS between 2000 and 2009, using archival data from the Chandra X-ray Observatory ACIS-S detector in Graded mode. Page et al. (2011) and Shternin et al. (2011) attributed this decay to enhanced neutrino emission from a superfluid neutron transition in the core. Here we test this decline, combining analysis of the Cas A NS using all Chandra X-ray detectors and modes (HRC-S, HRC-I, ACIS-I, ACIS-S in Faint mode, and ACIS-S in Graded mode) and adding a 2012 May ACIS-S Graded mode observation, using the most current calibrations (CALDB 4.5.5.1). We measure the temperature changes from each detector separately and test for systematic effects due to the nearby filaments of the supernova remnant. We find a 0.92%-2.0% decay over 10 years in the effective temperature, inferred from HRC-S data, depending on the choice of source and background extraction regions, with a best-fit decay of 1.0+/-0.7%. In comparison, the ACIS-S Graded data indicate a temperature decay of 3.1%-5.0% over 10 years, with a best-fit decay of 3.5+/-0.4%. Shallower observations using the other detectors yield temperature decays of 2.6+/-1.9% (ACIS-I), 2.1+/-1.0% (HRC-I), and 2.1+/-1.9% (ACIS-S Faint mode) over 10 years. Our best estimate indicates a decline of 2.9+/-0.9 (stat) +1.6/-0.3 (sys) % over 10 years. The complexity of the bright and varying supernova remnant background makes a definitive interpretation of archival Cas A Chandra observations difficult. A temperature decline of 1-3.5% over 10 years would indicate extraordinarily fast cooling of the NS that can be regulated by superfluidity of nucleons in the stellar core.
We propose that the observed cooling of the neutron star in Cassiopeia A is due to enhanced neutrino emission from the recent onset of the breaking and formation of neutron Cooper pairs in the 3P2 channel. We find that the critical temperature for th
We present analysis of multiple Chandra and XMM-Newton spectra, separated by 9-19 years, of four of the youngest central compact objects (CCOs) with ages < 2500 yr: CXOU J232327.9+584842 (Cassiopeia A), CXOU J160103.1-513353 (G330.2+1.0), 1WGA J1713.
We present a new model-independent (applicable for a broad range of equations of state) analysis of the neutrino emissivity due to triplet neutron pairing in neutron star cores. We find that the integrated neutrino luminosity of the Cooper Pair Forma
The study of how neutron stars cool over time can provide invaluable insights into fundamental physics such as the nuclear equation of state and superconductivity and superfluidity. A critical relation in neutron star cooling is the one between obser
We demonstrate that the high-quality cooling data observed for the young neutron star in the supernova remnant Cassiopeia A over the past 10 years--as well as all other reliably known temperature data of neutron stars--can be comfortably explained wi