ﻻ يوجد ملخص باللغة العربية
We present a new model-independent (applicable for a broad range of equations of state) analysis of the neutrino emissivity due to triplet neutron pairing in neutron star cores. We find that the integrated neutrino luminosity of the Cooper Pair Formation (CPF) process can be written as a product of two factors. The first factor depends on the neutron star mass, radius and maximal critical temperature of neutron pairing in the core, $T_{Cn mathrm{max}}$, but not on the particular superfluidity model; it can be expressed by an analytical formula valid for many nucleon equations of state. The second factor depends on the shape of the critical temperature profile within the star, the ratio of the temperature $T$ to $T_{Cn mathrm{max}}$, but not on the maximal critical temperature itself. While this second factor depends on the superfluidity model, it obeys several model-independent constraints. This property allows one to analyse the thermal evolution of neutron stars with superfluid cores without relying on a specific model of their interiors. The constructed expressions allow us to perform a self-consistent analysis of spectral data and neutron star cooling theory. We apply these findings to the cooling neutron star in the Cassiopeia A supernova remnant using 14 sets of observations taken over 19 years. We constrain $T_{Cnmathrm{max}}$ to the range of $ (5-10)times 10^8$ K. This value depends weakly on the equation of state and superfluidity model, and will not change much if cooling is slower than the current data suggest. We also constrain the overall efficiency of the CPF neutrino luminosity.
We propose that the observed cooling of the neutron star in Cassiopeia A is due to enhanced neutrino emission from the recent onset of the breaking and formation of neutron Cooper pairs in the 3P2 channel. We find that the critical temperature for th
We demonstrate that the high-quality cooling data observed for the young neutron star in the supernova remnant Cassiopeia A over the past 10 years--as well as all other reliably known temperature data of neutron stars--can be comfortably explained wi
The study of how neutron stars cool over time can provide invaluable insights into fundamental physics such as the nuclear equation of state and superconductivity and superfluidity. A critical relation in neutron star cooling is the one between obser
The thermal evolution of young neutron stars (NSs) reflects the neutrino emission properties of their cores. Heinke et al. (2010) measured a 3.6+/-0.6% decay in the surface temperature of the Cassiopeia A (Cas A) NS between 2000 and 2009, using archi
The enigmatic X-ray emission from the bright optical star, $gamma$ Cassiopeia, is a long-standing problem. $gamma$ Cas is known to be a binary system consisting of a Be-type star and a low-mass ($Msim 1,M_odot$) companion of unknown nature orbiting i