ترغب بنشر مسار تعليمي؟ اضغط هنا

Advanced Quantum Noise

56   0   0.0 ( 0 )
 نشر من قبل Ulrich Vogl
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use the quantum correlations of twin-beams of light to probe the added noise when one of the beams propagates through a medium with anomalous dispersion. The experiment is based on two successive four-wave mixing processes in rubidium vapor, which allow for the generation of bright two-mode-squeezed twin-beams followed by a controlled advancement while maintaining the shared quantum-correlations between the beams. The demonstrated effect allows the study of irreversible decoherence in a medium exhibiting anomalous dispersion, and for the first time shows the advancement of a bright nonclassical state of light. The advancement and corresponding degradation of the quantum correlations are found to be operating near the fundamental quantum limit imposed by using a phase-insensitive amplifier.

قيم البحث

اقرأ أيضاً

Quantum memories are essential for large-scale quantum information networks. Along with high efficiency, storage lifetime and optical bandwidth, it is critical that the memory add negligible noise to the recalled signal. A common source of noise in o ptical quantum memories is spontaneous four-wave mixing. We develop and implement a technically simple scheme to suppress this noise mechanism by means of quantum interference. Using this scheme with a Raman memory in warm atomic vapour we demonstrate over an order of magnitude improvement in noise performance. Furthermore we demonstrate a method to quantify the remaining noise contributions and present a route to enable further noise suppression. Our scheme opens the way to quantum demonstrations using a broadband memory, significantly advancing the search for scalable quantum photonic networks.
140 - Amro Dodin , Paul Brumer 2021
Excitation of molecules by incident incoherent electromagnetic radiation, such as sunlight, is described in detail and contrasted with the effect of coherent (e.g. laser) light. The nature of the quantum coherences induced by the former, relevant to transport processes in nature and in technology, is emphasized. Both equilibrium and steady state scenarios are discussed, Three examples: simple models, calcium excitation in polarized light, and the isomerization of retinal in rhodopsin are used to expose the underlying qualitative nature of the established coherences.
Simulations of high-complexity quantum systems, which are intractable for classical computers, can be efficiently done with quantum computers. Similarly, the increasingly complex quantum electronic circuits themselves will also need efficient simulat ions on quantum computers, which in turn will be important in quantum-aided design for next-generation quantum processors. Here, we implement variational quantum eigensolvers to simulate a Josephson-junction-array quantum circuit, which leads to the discovery of a new type of high-performance qubit, plasonium. We fabricate this new qubit and demonstrate that it exhibits not only long coherence time and high gate fidelity, but also a shrinking physical size and larger anharmonicity than the transmon, which can offer a number of advantages for scaling up multi-qubit devices. Our work opens the way to designing advanced quantum processors using existing quantum computing resources.
We prepare number stabilized ultracold clouds through the real-time analysis of non-destructive images and the application of feedback. In our experiments, the atom number ${Nsim10^6}$ is determined by high precision Faraday imaging with uncertainty $Delta_N$ below the shot noise level, i.e., $Delta_N <sqrt{N}$. Based on this measurement, feedback is applied to reduce the atom number to a user-defined target, whereupon a second imaging series probes the number stabilized cloud. By this method, we show that the atom number in ultracold clouds can be prepared below the shot noise level.
Cavity quantum electrodynamics describes the fundamental interactions between light and matter, and how they can be controlled by shaping the local environment. For example, optical microcavities allow high-efficiency detection and manipulation of si ngle atoms. In this regime fluctuations of atom number are on the order of the mean number, which can lead to signal fluctuations in excess of the noise on the incident probe field. Conversely, we demonstrate that nonlinearities and multi-atom statistics can together serve to suppress the effects of atomic fluctuations when making local density measurements on clouds of cold atoms. We measure atom densities below 1 per cavity mode volume near the photon shot-noise limit. This is in direct contrast to previous experiments where fluctuations in atom number contribute significantly to the noise. Atom detection is shown to be fast and efficient, reaching fidelities in excess of 97% after 10 us and 99.9% after 30 us.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا