ﻻ يوجد ملخص باللغة العربية
Excitation of molecules by incident incoherent electromagnetic radiation, such as sunlight, is described in detail and contrasted with the effect of coherent (e.g. laser) light. The nature of the quantum coherences induced by the former, relevant to transport processes in nature and in technology, is emphasized. Both equilibrium and steady state scenarios are discussed, Three examples: simple models, calcium excitation in polarized light, and the isomerization of retinal in rhodopsin are used to expose the underlying qualitative nature of the established coherences.
We investigate theoretically the effects of vacuum-induced coherence (VIC) on magneto-optical rotation (MOR). We carry out a model study to show that VIC in the presence of a control laser and a magnetic field can lead to large enhancement in the rot
We demonstrate theoretically the noise-stimulated enhancement of quantum coherence in a superconducting flux qubit. First, an external classical noise can increase the off-diagonal components of the qubit density matrix. Second, in the presence of no
We demonstrate a different scheme to perform optical sectioning of a sample based on the concept of induced coherence [Zou et al., Phys. Rev. Lett. 67, 318 (1991)]. This can be viewed as a different type of optical coherence tomography scheme where t
We introduce and theoretically demonstrate a quantum metamaterial made of dense ultracold neutral atoms loaded into an inherently defect-free artificial crystal of light, immune to well-known critical chal- lenges inevitable in conventional solid-sta
We observe the quantum coherent dynamics of atomic spinor wavepackets in the double well potentials of a far-off-resonance optical lattice. With appropriate initial conditions the system Rabi oscillates between the left and right localized states of