ﻻ يوجد ملخص باللغة العربية
We prepare number stabilized ultracold clouds through the real-time analysis of non-destructive images and the application of feedback. In our experiments, the atom number ${Nsim10^6}$ is determined by high precision Faraday imaging with uncertainty $Delta_N$ below the shot noise level, i.e., $Delta_N <sqrt{N}$. Based on this measurement, feedback is applied to reduce the atom number to a user-defined target, whereupon a second imaging series probes the number stabilized cloud. By this method, we show that the atom number in ultracold clouds can be prepared below the shot noise level.
We demonstrate that a dispersive imaging technique based on the Faraday effect can measure the atom number in a large, ultracold atom cloud with a precision below the atom shot noise level. The minimally destructive character of the technique allows
We study the counting statistics of ultracold bosonic atoms that are released from an optical lattice. We show that the counting probability distribution of the atoms collected at a detector located far away from the optical lattice can be used as a
Quantitative measure of disorder or randomness based on the entropy production characterizes thermodynamical irreversibility, which is relevant to the conventional second law of thermodynamics. Here we report, in a quantum mechanical fashion, the fir
Sorting atoms stochastically loaded in optical tweezer arrays via an auxiliary mobile tweezer is an efficient approach to preparing intermediate-scale defect-free atom arrays in arbitrary geometries. However, high filling fraction of atom-by-atom ass
Visible and infra-red light emitted at a Ag-Ag(111) junction has been investigated from tunneling to single atom contact conditions with a scanning tunneling microscope. The light intensity varies in a highly nonlinear fashion with the conductance of