ترغب بنشر مسار تعليمي؟ اضغط هنا

Preparation of ultracold atom clouds at the shot noise level

131   0   0.0 ( 0 )
 نشر من قبل Andrew Hilliard J
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We prepare number stabilized ultracold clouds through the real-time analysis of non-destructive images and the application of feedback. In our experiments, the atom number ${Nsim10^6}$ is determined by high precision Faraday imaging with uncertainty $Delta_N$ below the shot noise level, i.e., $Delta_N <sqrt{N}$. Based on this measurement, feedback is applied to reduce the atom number to a user-defined target, whereupon a second imaging series probes the number stabilized cloud. By this method, we show that the atom number in ultracold clouds can be prepared below the shot noise level.



قيم البحث

اقرأ أيضاً

We demonstrate that a dispersive imaging technique based on the Faraday effect can measure the atom number in a large, ultracold atom cloud with a precision below the atom shot noise level. The minimally destructive character of the technique allows us to take multiple images of the same cloud, which enables sub-atom shot noise measurement precision of the atom number and allows for an in situ determination of the measurement precision. We have developed a noise model that quantitatively describes the noise contributions due to photon shot noise in the detected light and the noise associated with single atom loss. This model contains no free parameters and is calculated through an analysis of the fluctuations in the acquired images. For clouds containing $N sim 5 times 10^6$ atoms, we achieve a precision more than a factor of two below the atom shot noise level.
We study the counting statistics of ultracold bosonic atoms that are released from an optical lattice. We show that the counting probability distribution of the atoms collected at a detector located far away from the optical lattice can be used as a method to infer the properties of the initially trapped states. We consider initial superfluid and insulating states with different occupation patterns. We analyze how the correlations between the initially trapped modes that develop during the expansion in the gravitational field are reflected in the counting distribution. We find that for detectors that are large compared to the size of the expanded wave function, the long-range correlations of the initial states can be distinguished by observing the counting statistics. We consider counting at one detector, as well as the joint probability distribution of counting particles at two detectors. We show that using detectors that are small compared to the size of the expanded wave function, insulating states with different occupation patterns, as well as supersolid states with different density distributions can be distinguished.
178 - J. W. Zhang , K. Rehan , M. Li 2020
Quantitative measure of disorder or randomness based on the entropy production characterizes thermodynamical irreversibility, which is relevant to the conventional second law of thermodynamics. Here we report, in a quantum mechanical fashion, the fir st theoretical prediction and experimental exploration of an information-theoretical bound on the entropy production. Our theoretical model consists of a simplest two-level dissipative system driven by a purely classical field, and under the Markovian dissipation, we find that such an information-theoretical bound, not fully validating quantum relaxation processes, strongly depends on the drive-to-decay ratio and the initial state. Furthermore, we carry out experimental verification of this information-theoretical bound by means of a single spin embedded in an ultracold trapped $^{40}$Ca$^{+}$ ion. Our finding, based on a two-level model, is fundamental to any quantum thermodynamical process and indicates much difference and complexity in quantum thermodynamics with respect to the conventionally classical counterpart.
Sorting atoms stochastically loaded in optical tweezer arrays via an auxiliary mobile tweezer is an efficient approach to preparing intermediate-scale defect-free atom arrays in arbitrary geometries. However, high filling fraction of atom-by-atom ass emblers is impeded by redundant sorting moves with imperfect atom transport, especially for scaling the system size to larger atom numbers. Here, we propose a new sorting algorithm (heuristic cluster algorithm, HCA) which provides near-fewest moves in our tailored atom assembler scheme and experimentally demonstrate a $5times6$ defect-free atom array with 98.4(7)$%$ filling fraction for one rearrangement cycle. The feature of HCA that the number of moves $N_{m}approx N$ ($N$ is the number of defect sites to be filled) makes the filling fraction uniform as the size of atom assembler enlarged. Our method is essential to scale hundreds of assembled atoms for bottom-up quantum computation, quantum simulation and precision measurement.
Visible and infra-red light emitted at a Ag-Ag(111) junction has been investigated from tunneling to single atom contact conditions with a scanning tunneling microscope. The light intensity varies in a highly nonlinear fashion with the conductance of the junction and exhibits a minimum at conductances close to the conductance quantum. The data are interpreted in terms of current noise at optical frequencies, which is characteristic of partially open transport channels.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا