ترغب بنشر مسار تعليمي؟ اضغط هنا

Three pseudoscalar meson production in $e^+ e^-$ annihilation

145   0   0.0 ( 0 )
 نشر من قبل Jorge Portoles
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English
 تأليف L.Y. Dai




اسأل ChatGPT حول البحث

We study, at leading order in the large number of colours expansion and within the Resonance Chiral Theory framework, the odd-intrinsic-parity $e^+ e^- rightarrow pi^+ pi^- (pi^0, eta)$ cross-sections in the energy regime populated by hadron resonances, namely $3 , m_{pi} lsim E lsim 2 , mbox{GeV}$. In addition we implement our results in the Monte Carlo generator PHOKHARA 7.0 and we simulate hadron production through the radiative return method.



قيم البحث

اقرأ أيضاً

125 - M. Davier , M. Peskin , A. Snyder 2006
A vector-dominance two-photon exchange model is proposed to explain the recently observed production of $rho^0rho^0$ and $rho^0phi$ pairs in $e^+e^-$ annihilation at 10.58 GeV with the BaBar detector. All the observed features of the data --angular a nd decay distributions, rates-- are in agreement with the model. Predictions are made for yet-unobserved final states.
We calculate cross sections of a pair $B_c$ meson production on the basis of two-photon mechanism from electron-positron annihilation. We investigate the production cross sections in nonrelativistic approximation and with the account of relativistic corrections. Relativistic production amplitudes of S-wave pair pseudoscalar, vector and pseudoscalar+vector $B_c$-mesons are constructed on the basis of relativistic quark model. Numerical values of the production cross sections are obtained at different center-of-mass energies. The comparison of one-photon and two-photon annihilation contributions is presented.
We calculate the next-to-leading order (NLO) radiative correction to the color-octet $h_c$ inclusive production in $e^+e^-$ annihilation at Super $B$ factory, within the nonrelativistic QCD factorization framework. The analytic expression for the NLO short-distance coefficient (SDC) accompanying the color-octet production operator $mathcal{O}_8^{h_c}(^1S_0)$ is obtained after summing both virtual and real corrections. The size of NLO correction for the color-octet production channel is found to be positive and substantial. The NLO prediction to the $h_c$ energy spectrum is plagued with unphysical endpoint singularity. With the aid of the soft-collinear effective theory, those large endpoint logarithms are resummed to the next-to-leading logarithmic (NLL) accuracy. Consequently, further supplemented with the non-perturbative shape function, we obtain the well-behaved predictions for the $h_c$ energy spectrum in the entire kinematic range, which awaits the examination by the forthcoming Belle II experiment.
99 - A.Denner , S.Dittmaier , M.Roth 2005
The recently completed calculation of the full electroweak O(alpha) corrections to the charged-current four-fermion production processes e+e- --> nu_tau tau+ mu- anti-nu_mu, u anti-d mu- anti-nu_mu, and u anti-d s anti-c is briefly reviewed. The calc ulation is performed using complex gauge-boson masses, supplemented by complex couplings to restore gauge invariance. The evaluation of the occurring one-loop tensor integrals, which include 5- and 6-point functions, requires new techniques. The effects of the complete O(alpha) corrections to the total cross section and to some differential cross sections of physical interest are discussed and compared to predictions based on the double-pole approximation, revealing that the latter approximation is not sufficient to fully exploit the potential of a future linear collider in an analysis of W-boson pairs at high energies.
We consider the $pi^+pi^-pi_0gamma$ final state in electron-positron annihilation at cms energies not far from the threshold. Both initial and final state radiations of the hard photon is considered but without interference between them. The amplitud e for the final state radiation is obtained by using the effective Wess-Zumino-Witten Lagrangian for pion-photon interactions valid for low energies. In real experiments energies are never such small that $rho$ and $omega$ mesons would have negligible effect. So a phenomenological Breit-Wigner factor is introduced in the final state radiation amplitude to account for the vector mesons influence. Using radiative 3$pi$ production amplitudes, a Monte Carlo event generator was developed which could be useful in experimental studies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا