ترغب بنشر مسار تعليمي؟ اضغط هنا

Stoichiometry control of the electronic properties of the LaAlO_3/SrTiO_3 heterointerface

114   0   0.0 ( 0 )
 نشر من قبل Chris Bell
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the effect of the laser parameters of pulsed laser deposition on the film stoichiometry and electronic properties of LaAlO_3/SrTiO_3 (001) heterostructures. The La/Al ratio in the LaAlO_3 films was varied over a wide range from 0.88 to 1.15, and was found to have a strong effect on the interface conductivity. In particular, the carrier density is modulated over more than two orders of magnitude. The film lattice expansion, caused by cation vacancies, is found to be the important functional parameter. These results can be understood to arise from the variations in the electrostatic boundary conditions, and their resolution, with stoichiometry.

قيم البحث

اقرأ أيضاً

Oxide heterostructures represent a unique playground for triggering the emergence of novel electronic states and for implementing new device concepts. The discovery of 2D conductivity at the $LaAlO_3/SrTiO_3$ interface has been linking for over a dec ade two of the major current research fields in Materials Science: correlated transition-metal-oxide systems and low-dimensional systems. A full merging of these two fields requires nevertheless the realization of $LaAlO_3/SrTiO_3$ heterostructures in the form of freestanding membranes. Here we show a completely new method for obtaining oxide hetero-membranes with micrometer lateral dimensions. Unlike traditional thin-film-based techniques developed for semiconductors and recently extended to oxides, the concept we demonstrate does not rely on any sacrificial layer and is based instead on pure strain engineering. We monitor through both real-time and post-deposition analyses, performed at different stages of growth, the strain relaxation mechanism leading to the spontaneous formation of curved hetero-membranes. Detailed transmission electron microscopy investigations show that the membranes are fully epitaxial and that their curvature results in a huge strain gradient, each of the layers showing a mixed compressive/tensile strain state. Electronic devices are fabricated by realizing ad hoc circuits for individual micro-membranes transferred on silicon chips. Our samples exhibit metallic conductivity and electrostatic field effect similar to 2D-electron systems in bulk heterostructures. Our results open a new path for adding oxide functionality into semiconductor electronics, potentially allowing for ultra-low voltage gating of a superconducting transistors, micromechanical control of the 2D electron gas mediated by ferroelectricity and flexoelectricity, and on-chip straintronics.
We report the operation of LaAlO_3 / SrTiO_3 depletion mode top-gated junction field-effect transistors using a range of LaAlO_3 thicknesses as the top gate insulator. Gated Hall bars show near ideal transistor characteristics at room temperature wit h on-off ratios greater than 1000. Lower temperature measurements demonstrate a systematic increase in the Hall mobility as the sheet carrier density in the channel is depleted via the top gate, providing a route to higher mobility, lower density electron gases in this system.
The effect of oxygen content on the magnetic and transport properties of the ferromagnetic Eu0.9Ca0.1BaCo2O5.5+{delta} has been carried out. Unlike the increase in TC with calcium content, paradoxally the TC value decreases with the increase in oxyge n (Co4+) content as observed in the undoped phase. This result unveils the hidden generic magnetic feature of the LnBaCo2O5.5 system in the calcium doped phase. This behaviour supports strongly the appearance of Co3+ disproportion action into Co4+ and Co2+ and the magnetic phase separation scenario of ferromagnetic domains embedded in an antiferromagnetic matrix. All the samples covering a wide range of oxygen content, exhibit a p-type conductivity.
We report on the temperature dependence of the $ZrTe_5$ electronic properties, studied at equilibrium and out of equilibrium, by means of time and angle resolved photoelectron spectroscopy. Our results unveil the dependence of the electronic band str ucture across the Fermi energy on the sample temperature. This finding is regarded as the dominant mechanism responsible for the anomalous resistivity observed at T* $sim$ 160 K along with the change of the charge carrier character from holelike to electronlike. Having addressed these long-lasting questions, we prove the possibility to control, at the ultrashort time scale, both the binding energy and the quasiparticle lifetime of the valence band. These experimental evidences pave the way for optically controlling the thermoelectric and magnetoelectric transport properties of $ZrTe_5$.
The electronic properties of the polar interface between insulating oxides is a subject of great current interest. An exciting new development is the observation of robust magnetism at the interface of two non-magnetic materials LaAlO_3 (LAO) and SrT iO_3 (STO). Here we present a microscopic theory for the formation and interaction of local moments, which depends on essential features of the LAO/STO interface. We show that correlation-induced moments arise due to interfacial splitting of orbital degeneracy. We find that gate-tunable Rashba spin-orbit coupling at the interface influences the exchange interaction mediated by conduction electrons. We predict that the zero-field ground state is a long-wavelength spiral and show that its evolution in an external field accounts semi-quantitatively for torque magnetometry data. Our theory describes qualitative aspects of the scanning SQUID measurements and makes several testable predictions for future experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا