ترغب بنشر مسار تعليمي؟ اضغط هنا

Ferromagnetic exchange, spin-orbit coupling and spiral magnetism at the LaAlO_3/SrTiO_3 interface

92   0   0.0 ( 0 )
 نشر من قبل Sumilan Banerjee Dr
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The electronic properties of the polar interface between insulating oxides is a subject of great current interest. An exciting new development is the observation of robust magnetism at the interface of two non-magnetic materials LaAlO_3 (LAO) and SrTiO_3 (STO). Here we present a microscopic theory for the formation and interaction of local moments, which depends on essential features of the LAO/STO interface. We show that correlation-induced moments arise due to interfacial splitting of orbital degeneracy. We find that gate-tunable Rashba spin-orbit coupling at the interface influences the exchange interaction mediated by conduction electrons. We predict that the zero-field ground state is a long-wavelength spiral and show that its evolution in an external field accounts semi-quantitatively for torque magnetometry data. Our theory describes qualitative aspects of the scanning SQUID measurements and makes several testable predictions for future experiments.

قيم البحث

اقرأ أيضاً

287 - J. Bunemann , F. Gebhard , T. Ohm 2008
We use the Gutzwiller variational theory to investigate the electronic and the magnetic properties of fcc-Nickel. Our particular focus is on the effects of the spin-orbit coupling. Unlike standard relativistic band-structure theories, we reproduce th e experimental magnetic moment direction and we explain the change of the Fermi-surface topology that occurs when the magnetic moment direction is rotated by an external magnetic field. The Fermi surface in our calculation deviates from early de-Haas--van-Alphen (dHvA) results. We attribute these discrepancies to an incorrect interpretation of the raw dHvA data.
With octahedrally coordinated $t_{rm 2g}$ orbitals which are active at filling $n=2$, the $rm Sr_2CrO_4$ compound exhibits rich interplay of spin-orbital physics with tetragonal distortion induced crystal field tuning by external agent such as pressu re. Considering both reversed and restored crystal field regimes, collective spin-orbital excitations are investigated in the antiferromagnetic (AFM) state of a realistic three-orbital model using the generalized self consistent and fluctuation approach including spin-orbit coupling (SOC). Important effects of SOC and Coulomb interaction induced orbital mixing terms are highlighted. The behavior of the calculated energy scales of collective excitations with crystal field is in striking similarity to that of the transition temperatures with pressure as obtained from susceptibility and resistivity anomalies in high-pressure studies.
101 - M. Patra , M. Thakur , S. Majumdar 2008
We report the new results of exchange bias effect in Nd_{1-x}Sr_{x}CoO_3 for x = 0.20 and 0.40, where the exchange bias phenomenon is involved with the ferrimagnetic (FI) state in a spontaneously phase separated system. The zero-field cooled magnetiz ation exhibits the FI (T_{FI}) and ferromagnetic (T_C) transitions at ~ 23 and sim 70 K, respectively for x = 0.20. The negative horizontal and positive vertical shifts of the magnetic hysteresis loops are observed when the system is cooled through T_{FI} in presence of a positive static magnetic field. Training effect is observed for x = 0.20, which could be interpreted by a spin configurational relaxation model. The unidirectional shifts of the hysteresis loops as a function of temperature exhibit the absence of exchange bias above T_{FI} for x = 0.20. The analysis of the cooling field dependence of exchange bias field and magnetization indicates that the ferromagnetic (FM) clusters consist of single magnetic domain with average size around sim 20 and ~ 40 AA ~ for x = 0.20 and 0.40, respectively. The sizes of the FM clusters are close to the percolation threshold for x = 0.20, which grow and coalesce to form the bigger size for x = 0.40 resulting in a weak exchange bias effect.
We report the effect of oxygen pressure during growth ($P_{O_{2}}$) on the electronic and magnetic properties of PrAlO$_3$ films grown on $rm TiO_{2}$-terminated SrTiO$_3$ substrates. Resistivity measurements show an increase in the sheet resistance as $P_{O_{2}}$ is increased. The temperature dependence of the sheet resistance at low temperatures is consistent with Kondo theory for $P_{O_{2}} ge 10^{-5}$ torr. Hall effect data exhibit a complex temperature dependence that suggests a compensated carrier density. We observe behavior consistent with two different types of carriers at interfaces grown at $P_{O_{2}} ge 10^{-4}$ torr. For these interfaces, we measured a moderate positive magnetoresistance (MR) due to a strong spin-orbit (SO) interaction at low magnetic fields that evolves into a larger negative MR at high fields. Positive high MR values are associated with samples where a fraction of carriers are derived from oxygen vacancies. Analysis of the MR data permitted the extraction of the SO interaction critical field ( e.g. $ H_{SO}=$1.25 T for $P_{O_{2}}=10^{-5}$ torr). The weak anti-localization effect due to a strong SO interaction becomes smaller for higher $P_{O_{2}}$ grown samples, where MR values are dominated by the Kondo effect, particularly at high magnetic fields.
The discovery of an ever increasing family of atomic layered magnetic materials, together with the already established vast catalogue of strong spin-orbit coupling (SOC) and topological systems, calls for some guiding principles to tailor and optimiz e novel spin transport and optical properties at their interfaces. Here we focus on the latest developments in both fields that have brought them closer together and make them ripe for future fruitful synergy. After outlining fundamentals on van der Waals (vdW) magnetism and SOC effects, we discuss how their coexistence, manipulation and competition could ultimately establish new ways to engineer robust spin textures and drive the generation and dynamics of spin current and magnetization switching in 2D materials-based vdW heterostructures. Grounding our analysis on existing experimental results and theoretical considerations, we draw a prospective analysis about how intertwined magnetism and spin-orbit torque (SOT) phenomena combine at interfaces with well-defined symmetries, and how this dictates the nature and figures-of-merit of SOT and angular momentum transfer. This will serve as a guiding role in designing future non-volatile memory devices that utilize the unique properties of 2D materials with the spin degree of freedom.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا