ﻻ يوجد ملخص باللغة العربية
The effect of oxygen content on the magnetic and transport properties of the ferromagnetic Eu0.9Ca0.1BaCo2O5.5+{delta} has been carried out. Unlike the increase in TC with calcium content, paradoxally the TC value decreases with the increase in oxygen (Co4+) content as observed in the undoped phase. This result unveils the hidden generic magnetic feature of the LnBaCo2O5.5 system in the calcium doped phase. This behaviour supports strongly the appearance of Co3+ disproportion action into Co4+ and Co2+ and the magnetic phase separation scenario of ferromagnetic domains embedded in an antiferromagnetic matrix. All the samples covering a wide range of oxygen content, exhibit a p-type conductivity.
We investigate the effect of the laser parameters of pulsed laser deposition on the film stoichiometry and electronic properties of LaAlO_3/SrTiO_3 (001) heterostructures. The La/Al ratio in the LaAlO_3 films was varied over a wide range from 0.88 to
We studied structural, electronic and magnetic properties of a cubic perovskite BaFeO$_{3-delta}$ ($0 le delta le 0.5$) within the density functional theory using a generalized gradient approximation and a GGA+U method. According to our calculations,
Two dimensional multiferroics inherit prominent physical properties from both low dimensional materials and magnetoelectric materials, and can go beyond their three dimensional counterparts for their unique structures. Here, based on density function
ZrSiS-type materials represent a large material family with unusual coexistence of topological nonsymmorphic Dirac fermions and nodal-line fermions. As a special group of ZrSiS-family, LnSbTe (Ln = Lanthanide rare earth) compounds provide a unique op
The results of measurements of XPS spectra and magnetic properties of graphene/Co composites prepared by adding of CoCl$_2$x6H$_2$O diluted in ethyl alcohol to highly-splitted graphite are presented. XPS Co 2p measurements show two sets of 2p$_{3/2,1