ﻻ يوجد ملخص باللغة العربية
The motion of a point mass in the J2 problem is generalized to that of a rigid body in a J2 gravity field. The linear and nonlinear stability of the classical type of relative equilibria of the rigid body, which have been obtained in our previous paper, are studied in the framework of geometric mechanics with the second-order gravitational potential. Non-canonical Hamiltonian structure of the problem, i.e., Poisson tensor, Casimir functions and equations of motion, are obtained through a Poisson reduction process by means of the symmetry of the problem. The linear system matrix at the relative equilibria is given through the multiplication of the Poisson tensor and Hessian matrix of the variational Lagrangian. Based on the characteristic equation of the linear system matrix, the conditions of linear stability of the relative equilibria are obtained. The conditions of nonlinear stability of the relative equilibria are derived with the energy-Casimir method through the projected Hessian matrix of the variational Lagrangian. With the stability conditions obtained, both the linear and nonlinear stability of the relative equilibria are investigated in details in a wide range of the parameters of the gravity field and the rigid body. We find that both the zonal harmonic J2 and the characteristic dimension of the rigid body have significant effects on the linear and nonlinear stability. Similar to the classical attitude stability in a central gravity field, the linear stability region is also consisted of two regions that are analogues of the Lagrange region and the DeBra-Delp region respectively. The nonlinear stability region is the subset of the linear stability region in the first quadrant that is the analogue of the Lagrange region. Our results are very useful for the studies on the motion of natural satellites in our solar system.
The motion of a point mass in the J2 problem is generalized to that of a rigid body in a J2 gravity field. Different with the original J2 problem, the gravitational orbit-rotation coupling of the rigid body is considered in this generalized problem.
The motion of a point mass in the J2 problem has been generalized to that of a rigid body in a J2 gravity field for new high-precision applications in the celestial mechanics and astrodynamics. Unlike the original J2 problem, the gravitational orbit-
For the Newtonian (gravitational) $n$-body problem in the Euclidean $d$-dimensional space, $dge 2$, the simplest possible periodic solutions are provided by circular relative equilibria, (RE) for short, namely solutions in which each body rigidly rot
The discovery of Plutos small moons in the last decade brought attention to the dynamics of the dwarf planets satellites. With such systems in mind, we study a planar $N$-body system in which all the bodies are point masses, except for a single rigid
We describe the linear and nonlinear stability and instability of certain symmetric configurations of point vortices on the sphere forming relative equilibria. These configurations consist of one or two rings, and a ring with one or two polar vortice