ﻻ يوجد ملخص باللغة العربية
We describe the linear and nonlinear stability and instability of certain symmetric configurations of point vortices on the sphere forming relative equilibria. These configurations consist of one or two rings, and a ring with one or two polar vortices. Such configurations have dihedral symmetry, and the symmetry is used to block diagonalize the relevant matrices, to distinguish the subspaces on which their eigenvalues need to be calculated, and also to describe the bifurcations that occur as eigenvalues pass through zero.
We develop a general stability theory for equilibrium points of Poisson dynamical systems and relative equilibria of Hamiltonian systems with symmetries, including several generalisations of the Energy-Casimir and Energy-Momentum methods. Using a top
For the Newtonian (gravitational) $n$-body problem in the Euclidean $d$-dimensional space, $dge 2$, the simplest possible periodic solutions are provided by circular relative equilibria, (RE) for short, namely solutions in which each body rigidly rot
The leading-order approximation to a Filippov system $f$ about a generic boundary equilibrium $x^*$ is a system $F$ that is affine one side of the boundary and constant on the other side. We prove $x^*$ is exponentially stable for $f$ if and only if
By extending the nonequilibrium potential refinement algorithm and lattice switch method to the semigrand ensemble, the semigrand potentials of the fcc and hcp structures of polydisperse hard-sphere crystals are calculated with the bias sampling sche
In this paper we investigate equilibria of continuous differential equation models of network dynamics. The motivation comes from gene regulatory networks where each directed edge represents either down- or up-regulation, and is modeled by a sigmoida