ﻻ يوجد ملخص باللغة العربية
The motion of a point mass in the J2 problem has been generalized to that of a rigid body in a J2 gravity field for new high-precision applications in the celestial mechanics and astrodynamics. Unlike the original J2 problem, the gravitational orbit-rotation coupling of the rigid body is considered in the generalized problem. The existence and properties of both the classical and non-classical relative equilibria of the rigid body are investigated in more details in the present paper based on our previous results. We nondimensionalize the system by the characteristic time and length to make the study more general. Through the study, it is found that the classical relative equilibria can always exist in the real physical situation. Numerical results suggest that the non-classical relative equilibria only can exist in the case of a negative J2, i.e., the central body is elongated; they cannot exist in the case of a positive J2 when the central body is oblate. In the case of a negative J2, the effect of the orbit-rotation coupling of the rigid body on the existence of the non-classical relative equilibria can be positive or negative, which depends on the values of J2 and the angular velocity. The bifurcation from the classical relative equilibria, at which the non-classical relative equilibria appear, has been shown with different parameters of the system. Our results here have given more details of the relative equilibria than our previous paper, in which the existence conditions of the relative equilibria are derived and primarily studied. Our results have also extended the previous results on the relative equilibria of a rigid body in a central gravity field by taking into account the oblateness of the central body.
The motion of a point mass in the J2 problem is generalized to that of a rigid body in a J2 gravity field. The linear and nonlinear stability of the classical type of relative equilibria of the rigid body, which have been obtained in our previous pap
The motion of a point mass in the J2 problem is generalized to that of a rigid body in a J2 gravity field. Different with the original J2 problem, the gravitational orbit-rotation coupling of the rigid body is considered in this generalized problem.
The discovery of Plutos small moons in the last decade brought attention to the dynamics of the dwarf planets satellites. With such systems in mind, we study a planar $N$-body system in which all the bodies are point masses, except for a single rigid
For the Newtonian (gravitational) $n$-body problem in the Euclidean $d$-dimensional space, $dge 2$, the simplest possible periodic solutions are provided by circular relative equilibria, (RE) for short, namely solutions in which each body rigidly rot
We describe the linear and nonlinear stability and instability of certain symmetric configurations of point vortices on the sphere forming relative equilibria. These configurations consist of one or two rings, and a ring with one or two polar vortice