ترغب بنشر مسار تعليمي؟ اضغط هنا

Characteristics of Power Loss in SMC a Key for Desining the Best Values of Technological Parameters

34   0   0.0 ( 0 )
 نشر من قبل Krzysztof Sokalski prof
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Optimization of power loss in soft magnetic components basis on the choice of the best technological parameters values. Therefore, the power losses have been measured in Somaloy 500 samples for a wide range of frequency and magnetic induction. These samples have been prepared under a wide range of the hardening temperatures and pressures. The power loss characteristics have been derived by assuming that investigated samples obeyed the scaling law. Agreement obtained between experimental data and the scaling theory has confirmed this assumption. Moreover, the experimental data of the given sample have been collapsed to a single curve which represented measurements for all values of frequency an magnetic induction pick. Therefore, the scaling transforms the losses characteristics from the two dimensional surfaces to the one dimensional curves. The samples were produced according two methods: for different pressures with constant temperature and at different temperatures with constant pressure. In both cases the power losses decrease with increasing pressure and with increasing temperature. These trends in decreasing losses stopped for certain critical values of pressure and temperature, respectively. Above these values the power losses increase suddenly. Therefore, the mentioned above the critical pressure and the critical temperature are sought after solutions for optimal values. In order to reduce the parameters values set the limit curve in the pressure-temperature plane has been derive. This curve constitutes a separation curve between the parameters values corresponding to high and low losses.

قيم البحث

اقرأ أيضاً

100 - O. Gladii , M. Collet , Y. Henry 2019
We characterize spin wave propagation and its modification by an electrical current in Permalloy(Py)/Pt bilayers with Py thickness between 4 and 20 nm. First, we analyze the frequency non-reciprocity of surface spin waves and extract from it the inte rfacial Dzyaloshinskii-Moriya interaction constant $D_s$ accounting for an additional contribution due to asymmetric surface anisotropies. Second, we measure the spin-wave relaxation rate and deduce from it the Py/Pt spin mixing conductance $g^{uparrowdownarrow}_{eff}$. Last, applying a textit{dc} electrical current, we extract the spin Hall conductivity $sigma_{SH}$ from the change of spin wave relaxation rate due to the spin-Hall spin transfer torque. We obtain a consistent picture of the spin wave propagation data for different film thicknesses using a single set of parameters $D_s=0.25$ pJ/m, $g^{uparrowdownarrow}_{eff} = 3.2times 10^{19}$ m$^{-2}$ and $sigma_{SH}=4times10^{5}$ S/m.
Understanding the influence of dipolar interactions in magnetic hyperthermia (MH) experiments is of crucial importance for a fine optimization of nanoparticle (NP) heating power. In this study, we use a kinetic Monte-Carlo algorithm to calculate hyst eresis loops, so both time and temperature are correctly taken into account. It is demonstrated that this algorithm correctly reproduces the high-frequency hysteresis loop of both superparamagnetic NPs and ferromagnetic ones without any ad-hoc parameters. The algorithm is easily parallelizable so calculation on several processors decreases considerably calculation time. The specific absorption rate (SAR) of NPs dispersed inside spherical lysosomes is studied as a function of several key parameters: volume concentration, applied magnetic field, lysosome size, NP diameter and anisotropy. The influence of these parameters is illustrated and comprehensively explained. In summary, the effect of magnetic interactions is to increase the coercive field, saturation field and hysteresis area of major loops. However, for small amplitude magnetic field such as the ones used in MH, the heating power as function of concentration can increase, decrease or display a bell shape, depending of the relationship between the applied magnetic field and the coercive/saturation fields of the NPs. The hysteresis area is found to be well correlated to the parallel or antiparallel nature of the dipolar field acting on each NP. It is shown that the heating power increases or decreases sharply in the vicinity of the lysosome membrane. The amplitude of variation reaches more than one order of magnitude in certain conditions. Finally, implications of these various findings are discussed in the framework of MH optimization. It is concluded that feedbacks on specific points from biology experiments are required for further advance on the optimization of NPs for MH.
Novel algorithm for designing values of technological parameters for production of Soft Magnetic Composites (SMC) has been created. These parameters are the following magnitudes: hardening temperature $T$ and compaction pressure $p$. They enable us t o optimize of power losses and induction. The advantage of the presented algorithm consists in the bicriteria optimization. The crucial role in the presented algorithm play scaling and notion of pseudo-state equation. On the base of these items the mathematical models of the power losses and induction have been created. The models parameters have been calculated on the basis of the power losses characteristics and hysteresis loops. The created optimization system has been applied to specimens of Somaloy 500. Obtained output consists of finite set of feasible solutions. In order to select unique solution an example of additional criterion has been formulated.
The unique surface edge states make topological insulators a primary focus among different applications. In this article, we synthesized a large single crystal of Niobium(Nb)-doped Bi2Se3 topological insulator (TI) with a formula Nb0.25Bi2Se3. The si ngle crystal has characterized by using various techniques such as Powder X-ray Diffractometer (PXRD), DC magnetization measurements, Raman, and Ultrafast transient absorption spectroscopy (TRUS). There are (00l) reflections in the PXRD, and Superconductivity ingrown crystal is evident from clearly visible diamagnetic transition at 2.5K in both FC and ZFC measurements. The Raman spectroscopy is used to find the different vibrational modes in the sample. Further, the sample is excited by a pump of 1.90 eV, and a kinetic decay profile at 1.38 eV is considered for terahertz analysis. The differential decay profile has different vibrations, and these oscillations have analyzed in terms of terahertz. This article not only provides evidence of terahertz generation in Nb-doped sample along with undoped sample but also show that the dopant atom changes the dynamics of charge carriers and thereby the shift in the Terahertz frequency response. In conclusion, a suitable dopant can be used as a processor for the tunability of terahertz frequency in TI.
The thermal lines method for the evaluation of vibrational expectation values of electronic observables [B. Monserrat, Phys. Rev. B 93, 014302 (2016)] was recently proposed as a physically motivated approximation offering balance between the accuracy of direct Monte Carlo integration and the low computational cost of using local quadratic approximations. In this paper we reformulate thermal lines as a stochastic implementation of quadrature grid integration, analyze the analytical form of its bias, and extend the method to multiple point quadrature grids applicable to any factorizable harmonic or anharmonic nuclear wave function. The bias incurred by thermal lines is found to depend on the local form of the expectation value, and we demonstrate that the use of finer quadrature grids along selected modes can eliminate this bias, while still offering a ~30% lower computational cost than direct Monte Carlo integration in our tests.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا