ترغب بنشر مسار تعليمي؟ اضغط هنا

Stochastic sampling of quadrature grids for the evaluation of vibrational expectation values

120   0   0.0 ( 0 )
 نشر من قبل Pablo L\\'opez R\\'ios
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The thermal lines method for the evaluation of vibrational expectation values of electronic observables [B. Monserrat, Phys. Rev. B 93, 014302 (2016)] was recently proposed as a physically motivated approximation offering balance between the accuracy of direct Monte Carlo integration and the low computational cost of using local quadratic approximations. In this paper we reformulate thermal lines as a stochastic implementation of quadrature grid integration, analyze the analytical form of its bias, and extend the method to multiple point quadrature grids applicable to any factorizable harmonic or anharmonic nuclear wave function. The bias incurred by thermal lines is found to depend on the local form of the expectation value, and we demonstrate that the use of finer quadrature grids along selected modes can eliminate this bias, while still offering a ~30% lower computational cost than direct Monte Carlo integration in our tests.



قيم البحث

اقرأ أيضاً

In this work, we present a computational scheme for isolating the vibrational spectrum of a defect in a solid. By quantifying the defect character of the atom-projected vibrational spectra, the contributing atoms are identified and the strength of th eir contribution determined. This method could be used to systematically improve phonon fragment calculations. More interestingly, using the atom-projected vibrational spectra of the defect atoms directly, it is possible to obtain a well-converged defect spectrum at lower computational cost, which also incorporates the host-lattice interactions. Using diamond as the host material, four test case defects, each presenting a distinctly different vibrational behaviour, are considered: a heavy substitutional dopant (Eu), two intrinsic defects (neutral vacancy and split interstitial), and the negatively charged N-vacancy center. The heavy dopant and split interstitial present localized modes at low and high frequencies, respectively, showing little overlap with the host spectrum. In contrast, the neutral vacancy and the N-vacancy center show a broad contribution to the upper spectral range of the host spectrum, making them challenging to extract. Independent of the vibrational behaviour, the main atoms contributing to the defect spectrum can be clearly identified. Recombination of their atom-projected spectra results in the isolated defect spectrum.
We present a new method for sampling stochastic displacements in Brownian Dynamics (BD) simulations of colloidal scale particles. The method relies on a new formulation for Ewald summation of the Rotne-Prager-Yamakawa (RPY) tensor, which guarantees t hat the real-space and wave-space contributions to the tensor are independently symmetric and positive-definite for all possible particle configurations. Brownian displacements are drawn from a superposition of two independent samples: a wave-space (far-field or long-ranged) contribution, computed using techniques from fluctuating hydrodynamics and non-uniform Fast Fourier Transforms; and a real-space (near-field or short-ranged) correction, computed using a Krylov subspace method. The combined computational complexity of drawing these two independent samples scales linearly with the number of particles. The proposed method circumvents the super-linear scaling exhibited by all known iterative sampling methods applied directly to the RPY tensor that results from the power law growth of the condition number of tensor with the number of particles. Calculations for hard sphere dispersions and colloidal gels are illustrated and used to explore the role of microstructure on performance of the algorithm. In practice, the logarithmic part of the predicted scaling is not observed and the algorithm scales linearly for up to 4 million particles, obtaining speed ups of over an order of magnitude over existing iterative methods, and making the cost of computing Brownian displacements comparable the cost of computing deterministic displacements in BD simulations. A high-performance implementation employing non-uniform fast Fourier transforms implemented on graphics processing units and integrated with the software package HOOMD-blue is used for benchmarking.
With the examples of the C $K$-edge in graphite and the B $K$-edge in hexagonal BN, we demonstrate the impact of vibrational coupling and lattice distortions on the X-ray absorption near-edge structure (XANES) in 2D layered materials. Theoretical XAN ES spectra are obtained by solving the Bethe-Salpeter equation of many-body perturbation theory, including excitonic effects through the correlated motion of core-hole and excited electron. We show that accounting for zero-point motion is important for the interpretation and understanding of the measured X-ray absorption fine structure in both materials, in particular for describing the $sigma^*$-peak structure.
We develop a method to efficiently construct phase diagrams using machine learning. Uncertainty sampling (US) in active learning is utilized to intensively sample around phase boundaries. Here, we demonstrate constructions of three known experimental phase diagrams by the US approach. Compared with random sampling, the US approach decreases the number of sampling points to about 20%. In particular, the reduction rate is pronounced in more complicated phase diagrams. Furthermore, we show that using the US approach, undetected new phase can be rapidly found, and smaller number of initial sampling points are sufficient. Thus, we conclude that the US approach is useful to construct complicated phase diagrams from scratch and will be an essential tool in materials science.
Accurate and efficient predictions of the quasiparticle properties of complex materials remain a major challenge due to the convergence issue and the unfavorable scaling of the computational cost with respect to the system size. Quasiparticle $GW$ ca lculations for two dimensional (2D) materials are especially difficult. The unusual analytical behaviors of the dielectric screening and the electron self-energy of 2D materials make the conventional Brillouin zone (BZ) integration approach rather inefficient and require an extremely dense $k$-grid to properly converge the calculated quasiparticle energies. In this work, we present a combined non-uniform sub-sampling and analytical integration method that can drastically improve the efficiency of the BZ integration in 2D $GW$ calculations. Our work is distinguished from previous work in that, instead of focusing on the intricate dielectric matrix or the screened Coulomb interaction matrix, we exploit the analytical behavior of various terms of the convolved self-energy $Sigma(mathbf{q})$ in the small $mathbf{q}$ limit. This method, when combined with another accelerated $GW$ method that we developed recently, can drastically speed-up (by over three orders of magnitude) $GW$ calculations for 2D materials. Our method allows fully converged $GW$ calculations for complex 2D systems at a fraction of computational cost, facilitating future high throughput screening of the quasiparticle properties of 2D semiconductors for various applications. To demonstrate the capability and performance of our new method, we have carried out fully converged $GW$ calculations for monolayer C$_2$N, a recently discovered 2D material with a large unit cell, and investigate its quasiparticle band structure in detail.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا