ﻻ يوجد ملخص باللغة العربية
We characterize spin wave propagation and its modification by an electrical current in Permalloy(Py)/Pt bilayers with Py thickness between 4 and 20 nm. First, we analyze the frequency non-reciprocity of surface spin waves and extract from it the interfacial Dzyaloshinskii-Moriya interaction constant $D_s$ accounting for an additional contribution due to asymmetric surface anisotropies. Second, we measure the spin-wave relaxation rate and deduce from it the Py/Pt spin mixing conductance $g^{uparrowdownarrow}_{eff}$. Last, applying a textit{dc} electrical current, we extract the spin Hall conductivity $sigma_{SH}$ from the change of spin wave relaxation rate due to the spin-Hall spin transfer torque. We obtain a consistent picture of the spin wave propagation data for different film thicknesses using a single set of parameters $D_s=0.25$ pJ/m, $g^{uparrowdownarrow}_{eff} = 3.2times 10^{19}$ m$^{-2}$ and $sigma_{SH}=4times10^{5}$ S/m.
We investigate the effect of a direct current on propagating spin waves in a CoFeB/Ta bilayer structure. Using the micro-Brillouin light scattering technique, we observe that the spin wave amplitude may be attenuated or amplified depending on the dir
We study spin-wave transport in a microstructured Ni81Fe19 waveguide exhibiting broken translational symmetry. We observe the conversion of a beam profile composed of symmetric spin-wave width modes with odd numbers of antinodes n=1,3,... into a mixe
The spin Hall effect (SHE) is an important spintronics phenomenon, which allows transforming a charge current into a spin current and vice versa without the use of magnetic materials or magnetic fields. To gain new insight into the physics of the SHE
Spin-orbit torque (SOT) can drive sustained spin wave (SW) auto-oscillations in a class of emerging microwave devices known as spin Hall nano-oscillators (SHNOs), which have highly non-linear properties governing robust mutual synchronization at freq
Broadband magnetization response of equilateral triangular 1000 nm Permalloy dots has been studied under an in-plane magnetic field, applied parallel (buckle state) and perpendicular (Y state) to the triangles base. Micromagnetic simulations identify