ﻻ يوجد ملخص باللغة العربية
One-time memories (OTMs) are simple tamper-resistant cryptographic devices, which can be used to implement one-time programs, a very general form of software protection and program obfuscation. Here we investigate the possibility of building OTMs using quantum mechanical devices. It is known that OTMs cannot exist in a fully-quantum world or in a fully-classical world. Instead, we propose a new model based on isolated qubits -- qubits that can only be accessed using local operations and classical communication (LOCC). This model combines a quantum resource (single-qubit measurements) with a classical restriction (on communication between qubits), and can be implemented using current technologies, such as nitrogen vacancy centers in diamond. In this model, we construct OTMs that are information-theoretically secure against one-pass LOCC adversaries that use 2-outcome measurements. Our construction resembles Wiesners old idea of quantum conjugate coding, implemented using random error-correcting codes; our proof of security uses entropy chaining to bound the supremum of a suitable empirical process. In addition, we conjecture that our random codes can be replaced by some class of efficiently-decodable codes, to get computationally-efficient OTMs that are secure against computationally-bounded LOCC adversaries. In addition, we construct data-hiding states, which allow an LOCC sender to encode an (n-O(1))-bit messsage into n qubits, such that at most half of the message can be extracted by a one-pass LOCC receiver, but the whole message can be extracted by a general quantum receiver.
One-time memories (OTMs) are simple, tamper-resistant cryptographic devices, which can be used to implement sophisticated functionalities such as one-time programs. Can one construct OTMs whose security follows from some physical principle? This is n
We consider a notion of relative homology (and cohomology) for surfaces with two types of boundaries. Using this tool, we study a generalization of Kitaevs code based on surfaces with mixed boundaries. This construction includes both Bravyi and Kitae
We revisit the task of quantum state redistribution in the one-shot setting, and design a protocol for this task with communication cost in terms of a measure of distance from quantum Markov chains. More precisely, the distance is defined in terms of
Isolated qubits are a special class of quantum devices, which can be used to implement tamper-resistant cryptographic hardware such as one-time memories (OTMs). Unfortunately, these OTM constructions leak some information, and standard methods for pr
In this work, we prove a novel one-shot multi-sender decoupling theorem generalising Dupuis result. We start off with a multipartite quantum state, say on A1 A2 R, where A1, A2 are treated as the two sender systems and R is the reference system. We a