ﻻ يوجد ملخص باللغة العربية
We consider a notion of relative homology (and cohomology) for surfaces with two types of boundaries. Using this tool, we study a generalization of Kitaevs code based on surfaces with mixed boundaries. This construction includes both Bravyi and Kitaevs and Freedman and Meyers extension of Kitaevs toric code. We argue that our generalization offers a denser storage of quantum information. In a planar architecture, we obtain a three-fold overhead reduction over the standard architecture consisting of a punctured square lattice.
Quantum error-correcting codes are used to protect qubits involved in quantum computation. This process requires logical operators, acting on protected qubits, to be translated into physical operators (circuits) acting on physical quantum states. We
Surface codes are among the best candidates to ensure the fault-tolerance of a quantum computer. In order to avoid the accumulation of errors during a computation, it is crucial to have at our disposal a fast decoding algorithm to quickly identify an
We utilize a concatenation scheme to construct new families of quantum error correction codes that include the Bacon-Shor codes. We show that our scheme can lead to asymptotically good quantum codes while Bacon-Shor codes cannot. Further, the concate
We present a quantum error correcting code with dynamically generated logical qubits. When viewed as a subsystem code, the code has no logical qubits. Nevertheless, our measurement patterns generate logical qubits, allowing the code to act as a fault
We derive one-shot upper bounds for quantum noisy channel codes. We do so by regarding a channel code as a bipartite operation with an encoder belonging to the sender and a decoder belonging to the receiver, and imposing constraints on the bipartite