ﻻ يوجد ملخص باللغة العربية
In this work, we prove a novel one-shot multi-sender decoupling theorem generalising Dupuis result. We start off with a multipartite quantum state, say on A1 A2 R, where A1, A2 are treated as the two sender systems and R is the reference system. We apply independent Haar random unitaries in tensor product on A1 and A2 and then send the resulting systems through a quantum channel. We want the channel output B to be almost in tensor with the untouched reference R. Our main result shows that this is indeed the case if suitable entropic conditions are met. An immediate application of our main result is to obtain a one-shot simultaneous decoder for sending quantum information over a k-sender entanglement unassisted quantum multiple access channel (QMAC). The rate region achieved by this decoder is the natural one-shot quantum analogue of the pentagonal classical rate region. Assuming a simultaneous smoothing conjecture, this one-shot rate region approaches the optimal rate region of Yard, Dein the asymptotic iid limit. Our work is the first one to obtain a non-trivial simultaneous decoder for the QMAC with limited entanglement assistance in both one-shot and asymptotic iid settings; previous works used unlimited entanglement assistance.
We provide the first inner bounds for sending private classical information over a quantum multiple access channel. We do so by using three powerful information theoretic techniques: rate splitting, quantum simultaneous decoding for multiple access c
We revisit the task of quantum state redistribution in the one-shot setting, and design a protocol for this task with communication cost in terms of a measure of distance from quantum Markov chains. More precisely, the distance is defined in terms of
We study the consequences of super-quantum non-local correlations as represented by the PR-box model of Popescu and Rohrlich, and show PR-boxes can enhance the capacity of noisy interference channels between two senders and two receivers. PR-box corr
We prove the first non-trivial one-shot inner bounds for sending quantum information over an entanglement unassisted two-sender quantum multiple access channel (QMAC) and an unassisted two-sender two-receiver quantum interference channel (QIC). Previ
Extensive quantum error correction is necessary in order to scale quantum hardware to the regime of practical applications. As a result, a significant amount of decoding hardware is necessary to process the colossal amount of data required to constan