ﻻ يوجد ملخص باللغة العربية
We consider a triple quantum dot system in a triangular geometry with one of the dots connected to metallic leads. Using Wilsons numerical renormalization group method, we investigate quantum entanglement and its relation to the thermodynamic and transport properties, in the regime where each of the dots is singly occupied on average, but with non-negligible charge fluctuations. It is shown that even in the regime of significant charge fluctuations the formation of the Kondo singlets induces switching between separable and perfectly entangled states. The quantum phase transition between unentangled and entangled states is analyzed quantitatively and the corresponding phase diagram is explained by exactly solvable spin model.
We study entanglement of Kondo clouds in an open triple quantum dots (OTQDs) system based on the dissipaton equation of motion (DEOM) theory. A comprehensive picture of the long-range entanglement of Kondo clouds is sketched by the spectral functions
Numerical analysis of the simplest odd-numbered system of coupled quantum dots reveals an interplay between magnetic ordering, charge fluctuations and the tendency of itinerant electrons in the leads to screen magnetic moments. The transition from lo
Many-body entanglement is at the heart of the Kondo effect, which has its hallmark in quantum dots as a zero-bias conductance peak at low temperatures. It signals the emergence of a conducting singlet state formed by a localized dot degree of freedom
We study the possibility to observe the two channel Kondo physics in multiple quantum dot heterostructures in the presence of magnetic field. We show that a fine tuning of the coupling parameters of the system and an external magnetic field may stabi
A dilute concentration of magnetic impurities can dramatically affect the transport properties of an otherwise pure metal. This phenomenon, known as the Kondo effect, originates from the interactions of individual magnetic impurities with the conduct