ﻻ يوجد ملخص باللغة العربية
Many-body entanglement is at the heart of the Kondo effect, which has its hallmark in quantum dots as a zero-bias conductance peak at low temperatures. It signals the emergence of a conducting singlet state formed by a localized dot degree of freedom and conduction electrons. Carbon nanotubes offer the possibility to study the emergence of the Kondo entanglement by tuning many-body correlations with a gate voltage. Here we quantitatively show an undiscovered side of Kondo correlations, which counterintuitively tend to block conduction channels: inelastic cotunneling lines in the magnetospectrum of a carbon nanotube strikingly disappear when tuning the gate voltage. Considering the global SUT $otimes $ SUT symmetry of a carbon nanotube coupled to leads, we find that only resonances involving flips of the Kramers pseudospins, associated to this symmetry, are observed at temperatures and voltages below the corresponding Kondo scale. Our results demonstrate the robust formation of entangled many-body states with no net pseudospin.
The transmission of electrons through a non-interacting tight-binding chain with an interacting side quantum dot (QD) is analized. When the Kondo effect develops at the dot the conductance presents a wide minimum, reaching zero at the unitary limit.
We consider a triple quantum dot system in a triangular geometry with one of the dots connected to metallic leads. Using Wilsons numerical renormalization group method, we investigate quantum entanglement and its relation to the thermodynamic and tra
We analyze the transport properties of a double quantum dot device in the side-coupled configuration. A small quantum dot (QD), having a single relevant electronic level, is coupled to source and drain electrodes. A larger QD, whose multilevel nature
Numerical analysis of the simplest odd-numbered system of coupled quantum dots reveals an interplay between magnetic ordering, charge fluctuations and the tendency of itinerant electrons in the leads to screen magnetic moments. The transition from lo
A dilute concentration of magnetic impurities can dramatically affect the transport properties of an otherwise pure metal. This phenomenon, known as the Kondo effect, originates from the interactions of individual magnetic impurities with the conduct