ترغب بنشر مسار تعليمي؟ اضغط هنا

On the motivic stable pairs invariants of K3 surfaces

164   0   0.0 ( 0 )
 نشر من قبل Rahul Pandharipande
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

For a K3 surface S, we study motivic invariants of stable pairs moduli spaces associated to 3-fold thickenings of S. We conjecture suitable deformation and divisibility invariances for the Betti realization. Our conjectures, together with earlier calculations of Kawai-Yoshioka, imply a full determination of the theory in terms of the Hodge numbers of the Hilbert schemes of points of S. The work may be viewed as the third in a sequence of formulas starting with Yau-Zaslow and Katz-Klemm-Vafa (each recovering the former). Numerical data suggest the motivic invariants are linked to the Mathieu M_24 moonshine phenomena. The KKV formula and the Pairs/Noether-Lefschetz correspondence together determine the BPS counts of K3-fibered Calabi-Yau 3-folds in fiber classes in terms of modular forms. We propose a framework for a refined P/NL correspondence for the motivic invariants of K3-fibered CY 3-folds. For the STU model, a complete conjecture is presented.



قيم البحث

اقرأ أيضاً

We define the BPS invariants of Gopakumar-Vafa in the case of irreducible curve classes on Calabi-Yau 3-folds. The main tools are the theory of stable pairs in the derived category and Behrends constructible function approach to the virtual class. We prove that for irreducible classes the stable pairs generating function satisfies the strong BPS rationality conjectures. We define the contribution of each curve to the BPS invariants. A curve $C$ only contributes to the BPS invariants in genera lying between the geometric genus and arithmetic genus of $C$. Complete formulae are derived for nonsingular and nodal curves. A discussion of primitive classes on K3 surfaces from the point of view of stable pairs is given in the Appendix via calculations of Kawai-Yoshioka. A proof of the Yau-Zaslow formula for rational curve counts is obtained. A connection is made to the Katz-Klemm-Vafa formula for BPS counts in all genera.
113 - M. Kool 2013
The moduli space of stable pairs on a local surface $X=K_S$ is in general non-compact. The action of $mathbb{C}^*$ on the fibres of $X$ induces an action on the moduli space and the stable pair invariants of $X$ are defined by the virtual localizatio n formula. We study the contribution to these invariants of stable pairs (scheme theoretically) supported in the zero section $S subset X$. Sometimes there are no other contributions, e.g. when the curve class $beta$ is irreducible. We relate these surface stable pair invariants to the Poincare invariants of Durr-Kabanov-Okonek. The latter are equal to the Seiberg-Witten invariants of $S$ by work of Durr-Kabanov-Okonek and Chang-Kiem. We give two applications of our result. (1) For irreducible curve classes the GW/PT correspondence for $X = K_S$ implies Taubes GW/SW correspondence for $S$. (2) When $p_g(S) = 0$, the difference of surface stable pair invariants in class $beta$ and $K_S - beta$ is a universal topological expression.
We generalize the multiple cover formula of Y. Toda (proved by Maulik-Thomas) for counting invariants for semistable coherent sheaves on local K3 surfaces to semistable twisted sheaves over twisted local K3 surfaces. As applications we calculate the $SU(r)/zz_r$-Vafa-Witten invariants for K3 surfaces for any rank $r$ defined by Jiang for the Langlands dual group $SU(r)/zz_r$ of the gauge group $SU(r)$. We generalize and prove the S-duality conjecture of Vafa-Witten of K3 surfaces for all higher ranks based on the result of Tanaka-Thomas on the $SU(r)$-Vafa-Witten invariants.
346 - D. Maulik , R. Pandharipande , 2010
We study the virtual geometry of the moduli spaces of curves and sheaves on K3 surfaces in primitive classes. Equivalences relating the reduced Gromov-Witten invariants of K3 surfaces to characteristic numbers of stable pairs moduli spaces are proven . As a consequence, we prove the Katz-Klemm-Vafa conjecture evaluating $lambda_g$ integrals (in all genera) in terms of explicit modular forms. Indeed, all K3 invariants in primitive classes are shown to be governed by modular forms. The method of proof is by degeneration to elliptically fibered rational surfaces. New formulas relating reduced virtual classes on K3 surfaces to standard virtual classes after degeneration are needed for both maps and sheaves. We also prove a Gromov-Witten/Pairs correspondence for toric 3-folds. Our approach uses a result of Kiem and Li to produce reduced classes. In Appendix A, we answer a number of questions about the relationship between the Kiem-Li approach, traditional virtual cycles, and symmetric obstruction theories. The interplay between the boundary geometry of the moduli spaces of curves, K3 surfaces, and modular forms is explored in Appendix B by A. Pixton.
We prove the KKV conjecture expressing Gromov-Witten invariants of K3 surfaces in terms of modular forms. Our results apply in every genus and for every curve class. The proof uses the Gromov-Witten/Pairs correspondence for K3-fibered hypersurfaces o f dimension 3 to reduce the KKV conjecture to statements about stable pairs on (thickenings of) K3 surfaces. Using degeneration arguments and new multiple cover results for stable pairs, we reduce the KKV conjecture further to the known primitive cases. Our results yield a new proof of the full Yau-Zaslow formula, establish new Gromov-Witten multiple cover formulas, and express the fiberwise Gromov-Witten partition functions of K3-fibered 3-folds in terms of explicit modular forms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا