ﻻ يوجد ملخص باللغة العربية
A whole class of two-color experiments involves intense, short Terahertz radiation pulses. A fast detector that is sensitive and able to resolve both near-infrared and Terahertz pulses at the same time is highly desirable. Here we present the first detector of this kind. The detector element is a GaAs-based field effect transistor operated at room temperature. THz detection is successfully demonstrated at frequencies up to 4.9 THz. The THz detection time constant is shorter than 30 ps, the optical time constant is 150 ps. This detector is ideally suited for precise, simultaneous resolution of optical and THz pulses and for pulse characterization of high-power THz pulses up to tens of kW peak power levels. The dynamic range of the detector was as large as 65 $pm$ 3 dB/$sqrt{Hz}$, enabling applications in a large variety of experiments and setups, also including table-top systems.
In this paper we report on the timing resolution of the first production of 50 micro-meter thick Ultra-Fast Silicon Detectors (UFSD) as obtained in a beam test with pions of 180 GeV/c momentum. UFSD are based on the Low-Gain Avalanche Detectors (LGAD
Recently, the facilities of radioactive ion beam (RIB) combined with advanced detector systems provide us unique opportunity to probe the exotic properties of the nuclei with unusual neutron-to-proton ratio. In this article, a study of characterizati
Low Gain Avalanche Detector (LGAD) is the baseline sensing technology of the recently proposed Minimum Ionizing Particle (MIP) end-cap timing detectors (MTD) at the Atlas and CMS experiments. The current MTD sensor is designed as a multi-pad matrix d
Frequency combs have revolutionized time and frequency metrology and in recent years, new frequency comb lasers that are highly compact or even on-chip have been demonstrated in the mid-infrared and THz regions of the electromagnetic spectrum. The em
The development of Low-Gain Avalanche Detectors has opened up the possibility of manufacturing silicon detectors with signal larger than that of traditional sensors. In this paper we explore the timing performance of Low-Gain Avalanche Detectors, and