ﻻ يوجد ملخص باللغة العربية
In this paper we report on the timing resolution of the first production of 50 micro-meter thick Ultra-Fast Silicon Detectors (UFSD) as obtained in a beam test with pions of 180 GeV/c momentum. UFSD are based on the Low-Gain Avalanche Detectors (LGAD) design, employing n-on-p silicon sensors with internal charge multiplication due to the presence of a thin, low-resistivity diffusion layer below the junction. The UFSD used in this test belongs to the first production of thin (50 {mu}m) sensors, with an pad area of 1.4 mm2. The gain was measured to vary between 5 and 70 depending on the bias voltage. The experimental setup included three UFSD and a fast trigger consisting of a quartz bar readout by a SiPM. The timing resolution, determined comparing the time of arrival of the particle in one or more UFSD and the trigger counter, for single UFSD was measured to be 35 ps for a bias voltage of 200 V, and 26 ps for a bias voltage of 240 V, and for the combination of 3 UFSD to be 20 ps for a bias voltage of 200 V, and 15 ps for a bias voltage of 240 V.
The development of Low-Gain Avalanche Detectors has opened up the possibility of manufacturing silicon detectors with signal larger than that of traditional sensors. In this paper we explore the timing performance of Low-Gain Avalanche Detectors, and
Two modules of the AD detector have been studied with the test beam at the T10 facility at CERN. The AD detector is made of scintillator pads read out by wave-length shifters (WLS)coupled to clean fibres that carry the produced light to photo-multipl
A prototype of neutron spectrometer based on diamond detectors has been developed. This prototype consists of a $^6$Li neutron converter sandwiched between two CVD diamond crystals. The radiation hardness of the diamond crystals makes it suitable for
Ultra-Fast Silicon Detectors (UFSDs) are n-in-p silicon detectors that implement moderate gain (typically 5 to 25) using a thin highly doped p++ layer between the high resistivity p-bulk and the junction of the sensor. The presence of gain allows exc
A silicon-tungsten (Si-W) sampling calorimeter, consisting of 19 alternate layers of silicon pad detectors (individual pad area of 1~cm$^2$) and tungsten absorbers (each of one radiation length), has been constructed for measurement of electromagneti