ترغب بنشر مسار تعليمي؟ اضغط هنا

Structure of CB 26 Protoplanetary Disk Derived from Millimeter Dust Continuum Maps

97   0   0.0 ( 0 )
 نشر من قبل Vitaly Akimkin
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Observations of the circumstellar disk in the Bok globule CB 26 at 110, 230, and 270 GHz are presented together with the results of the simulations and estimates of the disk parameters. These observations were obtained using the SMA, IRAM Plateau de Bure, and OVRO interferometers. The maps have relatively high angular resolutions (0.4-1), making it possible to study the spatial structure of the gas-dust disk. The disk parameters are reconstructed via a quantitative comparison of observational and theoretical intensity maps. The disk model used to construct the theoretical maps is based on the assumption of hydrostatic and radiative equilibrium in the vertical direction, while the radial surface density profile is described phenomenologically. The system of equations for the transfer of the infrared and ultraviolet radiation is solved in the vertical direction, in order to compute the thermal structure of the disk. The disk best-fit parameters are derived for each map and all the maps simultaneously, using a conjugate gradient method. The degrees of degeneracy of the parameters describing the thermal structure and density distribution of the disk are analyzed in detail. All three maps indicate the presence of an inner dust-free region with a radius of approximately 35 AU, in agreement with the conclusions of other studies. The inclination of the disk is 78 deg, which is smaller than the value adopted in our earlier study of rotating molecular outflows from CB 26. The model does not provide any evidence for the growth of dust particles above a_max=0.02 cm.



قيم البحث

اقرأ أيضاً

(Sub)millimeter dust opacities are required for converting the observable dust continuum emission to the mass, but their values have long been uncertain, especially in disks around young stellar objects. We propose a method to constrain the opacity $ kappa_ u$ in edge-on disks from a characteristic optical depth $tau_{0, u}$, the density $rho_0$ and radius $R_0$ at the disk outer edge through $kappa_ u=tau_{0, u}/(rho_0 R_0)$ where $tau_{0, u}$ is inferred from the shape of the observed flux along the major axis, $rho_0$ from gravitational stability considerations, and $R_0$ from direct imaging. We applied the 1D semi-analytical model to the embedded, Class 0, HH 212 disk, which has high-resolution data in ALMA Band 9, 7, 6, and 3 and VLA Ka band ($lambda$=0.43, 0.85, 1.3, 2.9, and 9.1 mm). The modeling of the HH 212 disk is extended to 2D through RADMC-3D radiative transfer calculations. We find a dust opacity of $kappa_ u approx $ $1.9times 10^{-2}$, $1.3times 10^{-2}$, and $4.9times 10^{-3}$ cm$^2$ per gram of gas and dust for ALMA Bands 7, 6, and 3, respectively with uncertainties dependent on the adopted stellar mass. The inferred opacities lend support to the widely used prescription $kappa_lambda=2.3times 10^{-2} (1.3 {rm mm}/lambda)$ cm$^2$ g$^{-1}$ advocated by Beckwith et al. (1990). We inferred a temperature of ~45K at the disk outer edge which increases radially inward. It is well above the sublimation temperatures of ices such as CO and N$_2$, which supports the notion that the disk chemistry cannot be completely inherited from the protostellar envelope.
We present 870 $mu$m ALMA observations of polarized dust emission toward the Class II protoplanetary disk IM Lup. We find that the orientation of the polarized emission is along the minor axis of the disk, and that the value of the polarization fract ion increases steadily toward the center of the disk, reaching a peak value of ~1.1%. All of these characteristics are consistent with models of self-scattering of submillimeter-wave emission from an optically thin inclined disk. The distribution of the polarization position angles across the disk reveals that while the average orientation is along the minor axis, the polarization orientations show a significant spread in angles; this can also be explained by models of pure scattering. We compare the polarization with that of the Class I/II source HL Tau. A comparison of cuts of the polarization fraction across the major and minor axes of both sources reveals that IM Lup has a substantially higher polarization fraction than HL Tau toward the center of the disk. This enhanced polarization fraction could be due a number of factors, including higher optical depth in HL Tau, or scattering by larger dust grains in the more evolved IM Lup disk. However, models yield similar maximum grain sizes for both HL Tau (72 $mu$m) and IM Lup (61 $mu$m, this work). This reveals continued tension between grain-size estimates from scattering models and from models of the dust emission spectrum, which find that the bulk of the (unpolarized) emission in disks is most likely due to millimeter (or even centimeter) sized grains.
We report the detection of an excess in dust continuum emission at 233~GHz (1.3~mm in wavelength) in the protoplanetary disk around TW~Hya revealed through high-sensitivity observations at $sim$3~au resolution with the Atacama Large Millimeter/submil limeter Array (ALMA). The sensitivity of the 233~GHz image has been improved by a factor of 3 with regard to that of our previous cycle 3 observations. The overall structure is mostly axisymmetric, and there are apparent gaps at 25 and 41 au as previously reported. The most remarkable new finding is a few au-scale excess emission in the south-west part of the protoplanetary disk. The excess emission is located at 52 au from the disk center and is 1.5 times brighter than the surrounding protoplanetary disk at a significance of 12$sigma$. We performed a visibility fitting to the extracted emission after subtracting the axisymmetric protoplanetary disk emission and found that the inferred size and the total flux density of the excess emission are 4.4$times$1.0~au and 250~$mu$Jy, respectively. The dust mass of the excess emission corresponds to 0.03~$M_oplus$ if a dust temperature of 18~K is assumed. Since the excess emission can also be marginally identified in the Band 7 image at almost the same position, the feature is unlikely to be a background source. The excess emission can be explained by a dust clump accumulated in a small elongated vortex or a massive circumplanetary disk around a Neptune mass forming-planet.
Circumstellar discs are expected to be the nursery of planets. Grain growth within such discs is the first step in the planet formation process. The Bok globule CB 26 harbours such a young disc. We present a detailed model of the edge-on circumstella r disc and its envelope in the Bok globule CB 26. The model is based on HST near-infrared maps in the I, J, H, and K bands, OVRO and SMA radio maps at 1.1mm, 1.3mm and 2.7mm, and the spectral energy distribution (SED) from 0.9 microns to 3mm. New photometric and spectroscopic data from the Spitzer Space Telescope and the Caltech Submilimeter Observatory have been obtained and are part of our analysis. Using the self-consistent radiative transfer code MC3D, the model we construct is able to discriminate parameter sets and dust properties of both its parts, namely envelope and disc. We find that the disc has an inner hole with a radius of 45 +/- 5 AU. Based on a dust model including silicate and graphite the maximum grain size needed to reproduce the spectral millimetre index is 2.5 microns. Features seen in the near-infrared images, dominated by scattered light, can be described as a result of a rotating envelope. Successful employment of ISM dust in both the disc and envelope hint that grain growth may not yet play a significant role for the appearance of this system. A larger inner hole gives rise to the assumption that CB 26 is a circumbinary disc.
We aim at estimating the dust scale height of protoplanetary disks from millimeter continuum observations. First, we present a general expression of intensity of a ring in a protoplanetary disk, and show that we can constrain the dust scale height by the azimuthal intensity variation. Then, we apply the presented methodology to the two distinct rings at 68 au and at 100 au of the protoplanetary disk around HD 163296. We constrain the dust scale height by comparing the DSHARP high-resolution millimeter dust continuum image with radiative transfer simulations using RADMC-3D. We find that h_d/h_g > 0.84 at the inner ring and h_d/h_g < 0.11 at the outer ring with the 3 sigma uncertainties, where h_d is the dust scale height and h_g is the gas scale height. This indicates that the dust is flared at the inner ring and settled at the outer ring. We further constrain the ratio of turbulence parameter alpha to gas-to-dust-coupling parameter St from the derived dust scale height; alpha/St > 2.4 at the inner ring, and alpha/St < 1.1*10^{-2} at the outer ring. This result shows that the turbulence is stronger or the dust is smaller at the inner ring than at the outer ring.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا