ترغب بنشر مسار تعليمي؟ اضغط هنا

The circumstellar disc in the Bok globule CB 26: Multi-wavelength observations and modelling of the dust disc and envelope

105   0   0.0 ( 0 )
 نشر من قبل Juergen Sauter
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Circumstellar discs are expected to be the nursery of planets. Grain growth within such discs is the first step in the planet formation process. The Bok globule CB 26 harbours such a young disc. We present a detailed model of the edge-on circumstellar disc and its envelope in the Bok globule CB 26. The model is based on HST near-infrared maps in the I, J, H, and K bands, OVRO and SMA radio maps at 1.1mm, 1.3mm and 2.7mm, and the spectral energy distribution (SED) from 0.9 microns to 3mm. New photometric and spectroscopic data from the Spitzer Space Telescope and the Caltech Submilimeter Observatory have been obtained and are part of our analysis. Using the self-consistent radiative transfer code MC3D, the model we construct is able to discriminate parameter sets and dust properties of both its parts, namely envelope and disc. We find that the disc has an inner hole with a radius of 45 +/- 5 AU. Based on a dust model including silicate and graphite the maximum grain size needed to reproduce the spectral millimetre index is 2.5 microns. Features seen in the near-infrared images, dominated by scattered light, can be described as a result of a rotating envelope. Successful employment of ISM dust in both the disc and envelope hint that grain growth may not yet play a significant role for the appearance of this system. A larger inner hole gives rise to the assumption that CB 26 is a circumbinary disc.



قيم البحث

اقرأ أيضاً

We present a panchromatic study, involving a multiple technique approach, of the circumstellar disc surrounding the T Tauri star IM Lupi (Sz 82). We have undertaken a comprehensive observational study of IM Lupi using photometry, spectroscopy, millim etre interferometry and multi-wavelength imaging. For the first time, the disc is resolved from optical and near-infrared wavelengths in scattered light, to the millimetre regime in thermal emission. Our data-set, in conjunction with existing photometric data, provides an extensive coverage of the spectral energy distribution, including a detailed spectrum of the silicate emission bands. We have performed a simultaneous modelling of the various observations, using the radiative transfer code MCFOST, and analysed a grid of models over a large fraction of the parameter space via Bayesian inference. We have constructed a model that can reproduce all of the observations of the disc. Our analysis illustrates the importance of combining a wide range of observations in order to fully constrain the disc model, with each observation providing a strong constraint only on some aspects of the disc structure and dust content. Quantitative evidence of dust evolution in the disc is obtained: grain growth up to millimetre-sized particles, vertical stratification of dust grains with micrometric grains close to the disc surface and larger grains which have settled towards the disc midplane, and possibly the formation of fluffy aggregates and/or ice mantles around grains.
We report on results of near-infrared and optical observations of the mm disk embedded in the Bok globule CB 26 (Launhardt & Sargent 2001). The near-infrared images show a bipolar reflection nebula with a central extinction lane which coincides with the mm disk. Imaging polarimetry of this object yielded a polarization pattern which is typical for a young stellar object surrounded by a large circumstellar disk and an envelope, seen almost edge-on. The strong linear polarization in the bipolar lobes is caused by single scattering at dust grains and allowed to locate the illuminating source which coincides with the center of the mm disk. The spectral energy distribution of the YSO embedded in CB 26 resembles that of a ClassI source with a luminosity of 0.5 L_sun.Using the pre-main-sequence evolutionary tracks and the stellar mass inferred from the rotation curve of the disk, we derive an age of the system of <10^6 yr. H_alpha and [SII] narrow-band imaging as well as optical spectroscopy revealed an Herbig-Haro object 6.15 arcmin northwest of CB 26 YSO 1, perfectly aligned with the symmetry axis of the bipolar nebula. This Herbig-Haro object (HH 494) indicates ongoing accretion and outflow activity in CB 26 YSO 1. Its excitation characteristics indicate that the Herbig-Haro flow is propagating into a low-density environment. We suggest that CB 26 YSO 1 represents the transition stage between embedded protostellar accretion disks and more evolved protoplanetary disks around T Tauri stars in an undisturbed environment.
120 - A. Stutz , R. Launhardt , H. Linz 2010
We present Herschel observations of the isolated, low-mass star-forming Bok globule CB244. It contains two cold sources, a low-mass Class 0 protostar and a starless core, which is likely to be prestellar in nature, separated by 90 arcsec (~ 18000 AU) . The Herschel data sample the peak of the Planck spectrum for these sources, and are therefore ideal for dust-temperature and column density modeling. With these data and a near-IR extinction map, the MIPS 70 micron mosaic, the SCUBA 850 micron map, and the IRAM 1.3 mm map, we model the dust-temperature and column density of CB244 and present the first measured dust-temperature map of an entire star-forming molecular cloud. We find that the column-averaged dust-temperature near the protostar is ~ 17.7 K, while for the starless core it is ~ 10.6K, and that the effect of external heating causes the cloud dust-temperature to rise to ~ 17 K where the hydrogen column density drops below 10^21 cm^-2. The total hydrogen mass of CB244 (assuming a distance of 200 pc) is 15 +/- 5 M_sun. The mass of the protostellar core is 1.6 +/- 0.1 M_sun and the mass of the starless core is 5 +/- 2 M_sun, indicating that ~ 45% of the mass in the globule is participating in the star-formation process.
Asteroids and comets (planetesimals) are created in gas- and dust-rich protoplanetary discs. The presence of these planetesimals around main-sequence stars is usually inferred from the detection of excess continuum emission at infrared wavelengths fr om dust grains produced by destructive processes within these discs. Modelling of the disc structure and dust grain properties for those discs is often hindered by the absence of any meaningful constraint on the location and spatial extent of the disc. Multi-wavelength, spatially resolved imaging is thus invaluable in refining the interpretation of these systems. Observations of HD 48682 at far-infrared (Spitzer,Herschel) and sub-millimetre (JCMT, SMA) wavelengths indicated the presence of an extended, cold debris disc with a blackbody temperature of 57.9 +- 0.7 K. Here, we combined these data to perform a comprehensive study of the disc architecture and its implications for the dust grain properties. The deconvolved images revealed a cold debris belt, verified by combining a 3D radiative transfer dust continuum model with image analysis to replicate thestructure using a single, axisymmetric annulus. A Markov chain Monte Carlo analysis calculated the maximum likelihood of HD 48682s disc radius (Rdisc = 89 +17 -20 au), fractional width(DeltaRdisc = 0.41 +0.27 -0.20), position angle (theta = 66.3 +4.5 -4.9 degrees), and inclination (phi = 112.5 +4.2 -4.2 degrees). HD 48682 has been revealed to host a collisionally active, broad disc whose emission is dominated by small dust grains, smin approx. 0.6 microns, and a size distribution exponent of 3.60 +- 0.02.
Observations of the circumstellar disk in the Bok globule CB 26 at 110, 230, and 270 GHz are presented together with the results of the simulations and estimates of the disk parameters. These observations were obtained using the SMA, IRAM Plateau de Bure, and OVRO interferometers. The maps have relatively high angular resolutions (0.4-1), making it possible to study the spatial structure of the gas-dust disk. The disk parameters are reconstructed via a quantitative comparison of observational and theoretical intensity maps. The disk model used to construct the theoretical maps is based on the assumption of hydrostatic and radiative equilibrium in the vertical direction, while the radial surface density profile is described phenomenologically. The system of equations for the transfer of the infrared and ultraviolet radiation is solved in the vertical direction, in order to compute the thermal structure of the disk. The disk best-fit parameters are derived for each map and all the maps simultaneously, using a conjugate gradient method. The degrees of degeneracy of the parameters describing the thermal structure and density distribution of the disk are analyzed in detail. All three maps indicate the presence of an inner dust-free region with a radius of approximately 35 AU, in agreement with the conclusions of other studies. The inclination of the disk is 78 deg, which is smaller than the value adopted in our earlier study of rotating molecular outflows from CB 26. The model does not provide any evidence for the growth of dust particles above a_max=0.02 cm.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا