ترغب بنشر مسار تعليمي؟ اضغط هنا

Estimate on dust scale height from ALMA dust continuum image of the HD 163296 protoplanetary disk

195   0   0.0 ( 0 )
 نشر من قبل Kiyoaki Doi
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We aim at estimating the dust scale height of protoplanetary disks from millimeter continuum observations. First, we present a general expression of intensity of a ring in a protoplanetary disk, and show that we can constrain the dust scale height by the azimuthal intensity variation. Then, we apply the presented methodology to the two distinct rings at 68 au and at 100 au of the protoplanetary disk around HD 163296. We constrain the dust scale height by comparing the DSHARP high-resolution millimeter dust continuum image with radiative transfer simulations using RADMC-3D. We find that h_d/h_g > 0.84 at the inner ring and h_d/h_g < 0.11 at the outer ring with the 3 sigma uncertainties, where h_d is the dust scale height and h_g is the gas scale height. This indicates that the dust is flared at the inner ring and settled at the outer ring. We further constrain the ratio of turbulence parameter alpha to gas-to-dust-coupling parameter St from the derived dust scale height; alpha/St > 2.4 at the inner ring, and alpha/St < 1.1*10^{-2} at the outer ring. This result shows that the turbulence is stronger or the dust is smaller at the inner ring than at the outer ring.



قيم البحث

اقرأ أيضاً

We present ALMA observations of the $98.5~mathrm{GHz}$ dust continuum and the $mathrm{^{13}CO}~J = 1 - 0$ and $mathrm{C^{18}O}~J = 1 - 0$ line emissions of the protoplanetary disk associated with HD~142527. The $98.5~mathrm{GHz}$ continuum shows a st rong azimuthal-asymmetric distribution similar to that of the previously reported $336~mathrm{GHz}$ continuum, with a peak emission in dust concentrated region in the north. The disk is optically thin in both the $98.5~mathrm{GHz}$ dust continuum and the $mathrm{C^{18}O}~J = 1 - 0$ emissions. We derive the distributions of gas and dust surface densities, $Sigma_mathrm{g}$ and $Sigma_mathrm{d}$, and the dust spectral opacity index, $beta$, in the disk from ALMA Band 3 and Band 7 data. In the analyses, we assume the local thermodynamic equilibrium and the disk temperature to be equal to the peak brightness temperature of $mathrm{^{13}CO}~J = 3 - 2$ with a continuum emission. The gas-to-dust ratio, $mathrm{G/D}$, varies azimuthally with a relation $mathrm{G/D} propto Sigma_mathrm{d}^{-0.53}$, and $beta$ is derived to be $approx 1$ and $approx 1.7$ in the northern and southern regions of the disk, respectively. These results are consistent with the accumulation of larger dust grains in a higher pressure region. In addition, our results show that the peak $Sigma_mathrm{d}$ is located ahead of the peak $Sigma_mathrm{g}$. If the latter corresponds to a vortex of high gas pressure, the results indicate that the dust is trapped ahead of the vortex, as predicted by some theoretical studies.
151 - G. Guidi , M. Tazzari , L. Testi 2016
To characterize the mechanisms of planet formation it is crucial to investigate the properties and evolution of protoplanetary disks around young stars, where the initial conditions for the growth of planets are set. Our goal is to study grain growth in the disk of the young, intermediate mass star HD163296 where dust processing has already been observed, and to look for evidence of growth by ice condensation across the CO snowline, already identified in this disk with ALMA. Under the hypothesis of optically thin emission we compare images at different wavelengths from ALMA and VLA to measure the opacity spectral index across the disk and thus the maximum grain size. We also use a Bayesian tool based on a two-layer disk model to fit the observations and constrain the dust surface density. The measurements of the opacity spectral index indicate the presence of large grains and pebbles ($geq$1 cm) in the inner regions of the disk (inside $sim$50 AU) and smaller grains, consistent with ISM sizes, in the outer disk (beyond 150 AU). Re-analysing ALMA Band 7 Science Verification data we find (radially) unresolved excess continuum emission centered near the location of the CO snowline at $sim$90 AU. Our analysis suggests a grain size distribution consistent with an enhanced production of large grains at the CO snowline and consequent transport to the inner regions. Our results combined with the excess in infrared scattered light found by Garufi et al. (2014) suggests the presence of a structure at 90~AU involving the whole vertical extent of the disk. This could be evidence for small scale processing of dust at the CO snowline.
241 - S. Marino , S. Casassus , S. Perez 2015
The formation of planetesimals requires that primordial dust grains grow from micron- to km-sized bodies. Dust traps caused by gas pressure maxima have been proposed as regions where grains can concentrate and grow fast enough to form planetesimals, before radially migrating onto the star. We report new VLA Ka & Ku observations of the protoplanetary disk around the Herbig Ae/Be star MWC 758. The Ka image shows a compact emission region in the outer disk indicating a strong concentration of big dust grains. Tracing smaller grains, archival ALMA data in band 7 continuum shows extended disk emission with an intensity maximum to the north-west of the central star, which matches the VLA clump position. The compactness of the Ka emission is expected in the context of dust trapping, as big grains are trapped more easily than smaller grains in gas pressure maxima. We develop a non-axisymmetric parametric model inspired by a steady state vortex solution with parameters adequately selected to reproduce the observations, including the spectral energy distribution. Finally, we compare the radio continuum with SPHERE scattered light data. The ALMA continuum spatially coincides with a spiral-like feature seen in scattered light, while the VLA clump is offset from the scattered light maximum. Moreover, the ALMA map shows a decrement that matches a region devoid of scattered polarised emission. Continuum observations at a different wavelength are necessary to conclude if the VLA-ALMA difference is an opacity or a real dust segregation.
We report an analysis of the dust disk around DM~Tau, newly observed with the Atacama Large Millimeter/submillimeter Array (ALMA) at 1.3 mm. The ALMA observations with high sensitivity (8.4~$mu$Jy/beam) and high angular resolution (35~mas, 5.1~au) de tect two asymmetries on the ring at $rsim$20~au. They could be two vortices in early evolution, the destruction of a large scale vortex, or double continuum emission peaks with different dust sizes. We also found millimeter emissions with $sim$50~$mu$Jy (a lower limit dust mass of 0.3~$M_{rm Moon}$) inside the 3-au ring. To characterize these emissions, we modeled the spectral energy distribution (SED) of DM~Tau using a Monte Carlo radiative transfer code. We found that an additional ring at $r=$ 1~au could explain both the DM~Tau SED and the central point source. The disk midplane temperature at the 1-au ring calculated in our modeling is less than the typical water sublimation temperature of 150~K, prompting the possibility of forming small icy planets there.
77 - P.N. Diep , D.T. Hoai , N.B. Ngoc 2019
HD 163296 is one of the few protoplanetary discs displaying rings in the dust component. The present work uses ALMA observations of the 0.9 mm continuum emission having significantly better spatial resolution (~8 au) than previously available, provid ing new insight on the morphology of the dust disc and its double ring structure. The disc is shown to be thin and its position angle and inclination with respect to the sky plane are accurately measured as are the locations and shapes that characterize the observed ring/gap structure. Significant modulation of the intensity of the outer ring emission have been revealed and discussed. In addition, earlier ALMA observations of the emission of three molecular lines, CO(2-1), C18O(2-1), and DCO+(3-2), having a resolution of ~70 au, are used to demonstrate the Keplerian motion of the gas, found consistent with a central mass of 2.3 solar masses. An upper limit of ~9% of the rotation velocity is placed on the in-fall velocity. The beam size is shown to give the dominant contribution to the line widths, accounting for both their absolute values and their dependence on the distance to the central star.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا