ترغب بنشر مسار تعليمي؟ اضغط هنا

Comparative study of the electronic structure, phonon spectra and electron-phonon interaction of ZrB2 and TiB2

72   0   0.0 ( 0 )
 نشر من قبل Victor Antonov
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The electronic structure, optical and x-ray absorption spectra, angle dependence of the cyclotron masses and extremal cross sections of the Fermi surface, phonon spectra, electron-phonon Eliashberg and transport spectral functions, temperature dependence of electrical resistivity of the MB2 (M=Ti and Zr) diborides were investigated from first principles using the full potential linear muffin-tin orbital method. The calculations of the dynamic matrix were carried out within the framework of the linear response theory. A good agreement with experimental data of optical and x-ray absorption spectra, phonon spectra, electron-phonon spectral functions, electrical resistivity, cyclotron masses and extremal cross sections of the Fermi surface was achieved.

قيم البحث

اقرأ أيضاً

The electronic structure, Fermi surface, angle dependence of the cyclotron masses and extremal cross sections of the Fermi surface, phonon spectra, electron-phonon Eliashberg and transport spectral functions, temperature dependence of electrical resi stivity of the HfB2 diboride were investigated from first principles using the fully relativistic and full potential linear muffin-tin orbital methods. The calculations of the dynamic matrix were carried out within the framework of the linear response theory. A good agreement with experimental data of electron-phonon spectral functions, electrical resistivity, cyclotron masses and extremal cross sections of the Fermi surface was achieved.
Motivated by the recent discovery of superconductivity in Ca- and Yb-intercalated graphite (CaC$_{6}$ and YbC$_{6}$) and from the ongoing debate on the nature and role of the interlayer state in this class of compounds, in this work we critically stu dy the electron-phonon properties of a simple model based on primitive graphite. We show that this model captures an essential feature of the electron-phonon properties of the Graphite Intercalation Compounds (GICs), namely, the existence of a strong dormant electron-phonon interaction between interlayer and $pi ^{ast}$ electrons, for which we provide a simple geometrical explanation in terms of NMTO Wannier-like functions. Our findings correct the oversimplified view that nearly-free-electron states cannot interact with the surrounding lattice, and explain the empirical correlation between the filling of the interlayer band and the occurrence of superconductivity in Graphite-Intercalation Compounds.
200 - I. K. Yanson 2004
In strong-coupling superconductors with a short electron mean free path the self-energy effects in the superconducting order parameter play a major role in the phonon manifestation of the point-contact spectra at above-gap energies. We compare the ex pressions for the nonlinear conductivity of tunnel, ballistic, and diffusive point-contacts and show that these expression are similar and correspond to the measurements of the phonon structure in the point-contact spectra for the $pi$-band of MgB$_{2}$.
118 - Jiang-Tao Liu 2016
The effect of the resonance of electron scattering energy difference and phonon energy on the electron-phonon-electron interaction (EPEI) is studied. Results show that the resonance of electron transition energy and phonon energy can enhance EPEI by a magnitude of 1 to 2. Moreover, the anisotropic S-wave electron or dx2-y2 electron can enhance resonance EPEI, and the self-energy correction of the electron will weaken resonance EPEI. Particularly, the asymmetrical spin-flip scattering process in k space can reduce the effect of electronic self-energy to enhance resonance EPEI
Atom scattering is becoming recognized as a sensitive probe of the electron-phonon interaction parameter $lambda$ at metal and metal-overlayer surfaces. Here, the theory is developed linking $lambda$ to the thermal attenuation of atom scattering spec tra (in particular, the Debye-Waller factor), to conducting materials of different dimensions, from quasi-one dimensional systems such as W(110):H(1$times$1) and Bi(114), to quasi-two dimensional layered chalcogenides and high-dimensional surfaces such as quasicrystalline 2ML-Ba(0001)/Cu(001) and d-AlNiCo(00001). Values of $lambda$ obtained using He atoms compare favorably with known values for the bulk materials. The corresponding analysis indicates in addition the number of layers contributing to the electron-phonon interaction that is measured in an atom surface collision.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا