ترغب بنشر مسار تعليمي؟ اضغط هنا

Resonant electron-phonon-electron interaction

119   0   0.0 ( 0 )
 نشر من قبل Jiangtao Liu
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Jiang-Tao Liu




اسأل ChatGPT حول البحث

The effect of the resonance of electron scattering energy difference and phonon energy on the electron-phonon-electron interaction (EPEI) is studied. Results show that the resonance of electron transition energy and phonon energy can enhance EPEI by a magnitude of 1 to 2. Moreover, the anisotropic S-wave electron or dx2-y2 electron can enhance resonance EPEI, and the self-energy correction of the electron will weaken resonance EPEI. Particularly, the asymmetrical spin-flip scattering process in k space can reduce the effect of electronic self-energy to enhance resonance EPEI



قيم البحث

اقرأ أيضاً

Motivated by the recent discovery of superconductivity in Ca- and Yb-intercalated graphite (CaC$_{6}$ and YbC$_{6}$) and from the ongoing debate on the nature and role of the interlayer state in this class of compounds, in this work we critically stu dy the electron-phonon properties of a simple model based on primitive graphite. We show that this model captures an essential feature of the electron-phonon properties of the Graphite Intercalation Compounds (GICs), namely, the existence of a strong dormant electron-phonon interaction between interlayer and $pi ^{ast}$ electrons, for which we provide a simple geometrical explanation in terms of NMTO Wannier-like functions. Our findings correct the oversimplified view that nearly-free-electron states cannot interact with the surrounding lattice, and explain the empirical correlation between the filling of the interlayer band and the occurrence of superconductivity in Graphite-Intercalation Compounds.
The electronic structure, Fermi surface, angle dependence of the cyclotron masses and extremal cross sections of the Fermi surface, phonon spectra, electron-phonon Eliashberg and transport spectral functions, temperature dependence of electrical resi stivity of the HfB2 diboride were investigated from first principles using the fully relativistic and full potential linear muffin-tin orbital methods. The calculations of the dynamic matrix were carried out within the framework of the linear response theory. A good agreement with experimental data of electron-phonon spectral functions, electrical resistivity, cyclotron masses and extremal cross sections of the Fermi surface was achieved.
We present high-resolution angle-resolved photoemission spectroscopy study in conjunction with first principles calculations to investigate how the interaction of electrons with phonons in graphene is modified by the presence of Yb. We find that the transferred charges from Yb to the graphene layer hybridize with the graphene $pi$ bands, leading to a strong enhancement of the electron-phonon interaction. Specifically, the electron-phonon coupling constant is increased by as much as a factor of 10 upon the introduction of Yb with respect to as grown graphene ($leq$0.05). The observed coupling constant constitutes the highest value ever measured for graphene and suggests that the hybridization between graphene and the adatoms might be a critical parameter in realizing superconducting graphene.
We develop the theory of hydrodynamics of an isotropic Fermi liquid of electrons coupled to isotropic acoustic phonons, assuming that umklapp processes may be neglected. At low temperatures, the fluid is approximately Galilean invariant; at high temp eratures, the fluid is nearly relativistic; at intermediate temperatures, there are seven additional temperature regimes with unconventional thermodynamic properties and hydrodynamic transport coefficients in a three-dimensional system. We predict qualitative signatures of electron-phonon fluids in incoherent transport coefficients, shear and Hall viscosity, and plasmon dispersion relations. Our theory may be relevant for numerous quantum materials where strong electron-phonon scattering has been proposed to underlie a hydrodynamic regime, including $mathrm{WTe}_2$, $mathrm{WP}_2$, and $mathrm{PtSn}_4$.
Unconventional superconductivity is commonly linked to electronic pairing mechanisms, since it is believed that the conventional electron-phonon interaction (EPI) cannot cause sign-changing superconducting gap symmetries. Here, we show that this comm on understanding needs to be revised when one considers a more elaborate theory of electron-phonon superconductivity beyond standard approximations. We selfconsistently solve the full-bandwidth, anisotropic Eliashberg equations including vertex corrections beyond Migdals approximation assuming the usual isotropic EPI for cuprate, Fe-based and heavy-fermion superconductors with nested Fermi surfaces. In case of the high-$T_c$ cuprates we find a $d$-wave order parameter, as well as a nematic state upon increased doping. For Fe-based superconductors, we obtain $s_{pm}$ gap symmetry, while for heavy-fermion CeCoIn$_5$ we find unconventional $d$-wave pairing. These results provide a proof-of-concept that EPI cannot be excluded as a mediator of unconventional and of high-$T_c$ superconductivity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا