ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonlinearities in modified gravity cosmology. II. Impacts of modified gravity on the halo properties

147   0   0.0 ( 0 )
 نشر من قبل Youcai Zhang
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The statistics of dark matter halos is an essential component of understanding the nonlinear evolution in modified gravity cosmology. Based on a series of modified gravity N-body simulations, we investigate the halo mass function, concentration and bias. We model the impact of modified gravity by a single parameter zeta, which determines the enhancement of particle acceleration with respect to GR, given the identical mass distribution (zeta=1 in GR). We select snapshot redshifts such that the linear matter power spectra of different gravity models are identical, in order to isolate the impact of gravity beyond modifying the linear growth rate. At the baseline redshift corresponding to z_S=1.2 in the standard Lambda CDM, for a 10% deviation from GR(|zeta-1|=0.1), the measured halo mass function can differ by about 5-10%, the halo concentration by about 10-20%, while the halo bias differs significantly less. These results demonstrate that the halo mass function and/or the halo concentration are sensitive to the nature of gravity and may be used to make interesting constraints along this line.



قيم البحث

اقرأ أيضاً

In this paper, we make a comparison for the impacts of smooth dynamical dark energy, modified gravity, and interacting dark energy on the cosmological constraints on the total mass of active neutrinos. For definiteness, we consider the $Lambda$CDM mo del, the $w$CDM model, the $f(R)$ model, and two typical interacting vacuum energy models, i.e., the I$Lambda$CDM1 model with $Q=beta Hrho_{rm c}$ and the I$Lambda$CDM2 model with $Q=beta Hrho_{Lambda}$. In the cosmological fits, we use the Planck 2015 temperature and polarization data, in combination with other low-redshift observations including the baryon acoustic oscillations, the type Ia supernovae, the Hubble constant measurement, and the large-scale structure observations, such as the weak lensing as well as the redshift-space distortion. Besides, the Planck lensing measurement is also employed in this work. We find that, the $w$CDM model favors a higher upper limit on the neutrino mass compared to the $Lambda$CDM model, while the upper limit in the $f(R)$ model is similar with that of $Lambda$CDM model. For the interacting vacuum energy models, the I$Lambda$CDM1 model favors a higher upper limit on neutrino mass, while the I$Lambda$CDM2 model favors an identical neutrino mass with the case of $Lambda$CDM.
Modified Gravity (MG) scenarios have been advocated to account for the dark energy phenomenon in the universe. These models predict departures from General Relativity on large cosmic scales that can be tested through a variety of probes such as obser vations of galaxy clusters among others. Here, we investigate the imprint of MG models on the internal mass distribution of cluster-like halos as probed by the dark matter halo sparsity. To this purpose we perform a comparative analysis of the properties of the halo sparsity using N-body simulation halo catalogs of a standard flat $Lambda$CDM model and MG scenarios from the DUSTGRAIN-pathfinder simulation suite. We find that the onset of the screening mechanism leaves a distinct signature in the redshift evolution of the ensemble average halos sparsity. Measurements of the sparsity of galaxy clusters from currently available mass estimates are unable to test MG models due to the large uncertainties on the cluster masses. We show that this should be possible in the future provided large cluster samples with cluster masses determined to better than $30%$ accuracy level.
Model-independent constraints on modified gravity models hitherto exist mainly on linear scales. A recently developed formalism presented a consistent parameterisation that is valid on all scales. Using this approach, we perform model-independent mod ified gravity $N$-body simulations on all cosmological scales with a time-dependent $mu$. We present convergence tests of our simulations, and we examine how well existing fitting functions reproduce the non-linear matter power spectrum of the simulations. We find that although there is a significant variation in the accuracy of all of the fitting functions over the parameter space of our simulations, the ReACT framework delivers the most consistent performance for the matter power spectrum. We comment on how this might be improved to the level required for future surveys such as Euclid and the Vera Rubin Telescope (LSST). We also show how to compute weak-lensing observables consistently from the simulated matter power spectra in our approach, and show that ReACT also performs best when fitting the weak-lensing observables. This paves the way for a full model-independent test of modified gravity using all of the data from such upcoming surveys.
We propose a new cosmological framework in which the strength of the gravitational force acted on dark matter at late time can be weaker than that on the standard matter fields without introducing extra gravitational degrees of freedom. The framework integrates dark matter into a type-II minimally modified gravity that was recently proposed as a dark energy mimicker. The idea that makes such a framework possible consists of coupling a dark matter Lagrangian and a cosmological constant to the metric in a canonically transformed frame of general relativity (GR). On imposing a gauge fixing constraint, which explicitly breaks the temporal diffeomorphism invariance, we keep the number of gravitational degrees of freedom to be two, as in GR. We then make the inverse canonical transformation to bring the theory back to the original frame, where one can add the standard matter fields. This framework contains two free functions of time which specify the generating functional of the above mentioned canonical transformation and which are then used in order to realize desired time evolutions of both the Hubble expansion rate $H(z)$ and the effective gravitational constant for dark matter $G_{rm eff}(z)$. The aim of this paper is therefore to provide a new framework to address the two puzzles present in todays cosmology, i.e. the $H_0$ tension and the $S_8$ tension, simultaneously. When the dark matter is cold in this framework, we dub the corresponding cosmological model the V Canonical Cold Dark Matter (VCCDM), as the cosmological constant $Lambda$ in the standard $Lambda$CDM is replaced by a function $V(phi)$ of an auxiliary field $phi$ and the CDM is minimally coupled to the metric in a canonically transformed frame.
Modified gravity theories are a popular alternative to dark energy as a possible explanation for the observed accelerating cosmic expansion, and their cosmological tests are currently an active research field. Studies in recent years have been increa singly focused on testing these theories in the nonlinear regime, which is computationally demanding. Here we show that, under certain circumstances, a whole class of theories can be ruled out by using background cosmology alone. This is possible because certain classes of models (i) are fundamentally incapable of producing specific background expansion histories, and (ii) said histories are incompatible with local gravity tests. As an example, we demonstrate that a popular class of models, $f(R)$ gravity, would not be viable if observations suggest even a slight deviation of the background expansion history from that of the $Lambda$CDM paradigm.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا