ترغب بنشر مسار تعليمي؟ اضغط هنا

Dark energy versus modified gravity: Impacts on measuring neutrino mass

78   0   0.0 ( 0 )
 نشر من قبل Xin Zhang
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we make a comparison for the impacts of smooth dynamical dark energy, modified gravity, and interacting dark energy on the cosmological constraints on the total mass of active neutrinos. For definiteness, we consider the $Lambda$CDM model, the $w$CDM model, the $f(R)$ model, and two typical interacting vacuum energy models, i.e., the I$Lambda$CDM1 model with $Q=beta Hrho_{rm c}$ and the I$Lambda$CDM2 model with $Q=beta Hrho_{Lambda}$. In the cosmological fits, we use the Planck 2015 temperature and polarization data, in combination with other low-redshift observations including the baryon acoustic oscillations, the type Ia supernovae, the Hubble constant measurement, and the large-scale structure observations, such as the weak lensing as well as the redshift-space distortion. Besides, the Planck lensing measurement is also employed in this work. We find that, the $w$CDM model favors a higher upper limit on the neutrino mass compared to the $Lambda$CDM model, while the upper limit in the $f(R)$ model is similar with that of $Lambda$CDM model. For the interacting vacuum energy models, the I$Lambda$CDM1 model favors a higher upper limit on neutrino mass, while the I$Lambda$CDM2 model favors an identical neutrino mass with the case of $Lambda$CDM.

قيم البحث

اقرأ أيضاً

The next generation of galaxy surveys will allow us to test one of the most fundamental assumptions of the standard cosmology, i.e., that gravity is governed by the general theory of relativity (GR). In this paper we investigate the ability of the Ja valambre Physics of the Accelerating Universe Astrophysical Survey (J-PAS) to constrain GR and its extensions. Based on the J-PAS information on clustering and gravitational lensing, we perform a Fisher matrix forecast on the effective Newton constant, $mu$, and the gravitational slip parameter, $eta$, whose deviations from unity would indicate a breakdown of GR. Similar analysis is also performed for the DESI and Euclid surveys and compared to J-PAS with two configurations providing different areas, namely an initial expectation with 4000 $mathrm{deg}^2$ and the future best case scenario with 8500 $mathrm{deg}^2$. We show that J-PAS will be able to measure the parameters $mu$ and $eta$ at a sensitivity of $2% - 7%$, and will provide the best constraints in the interval $z = 0.3 - 0.6$, thanks to the large number of ELGs detectable in that redshift range. We also discuss the constraining power of J-PAS for dark energy models with a time-dependent equation-of-state parameter of the type $w(a)=w_0+w_a(1-a)$, obtaining $Delta w_0=0.058$ and $Delta w_a=0.24$ for the absolute errors of the dark energy parameters.
We develop an approach to compute observables beyond the linear regime of dark matter perturbations for general dark energy and modified gravity models. We do so by combining the Effective Field Theory of Dark Energy and Effective Field Theory of Lar ge-Scale Structure approaches. In particular, we parametrize the linear and nonlinear effects of dark energy on dark matter clustering in terms of the Lagrangian terms introduced in a companion paper, focusing on Horndeski theories and assuming the quasi-static approximation. The Euler equation for dark matter is sourced, via the Newtonian potential, by new nonlinear vertices due to modified gravity and, as in the pure dark matter case, by the effects of short-scale physics in the form of the divergence of an effective stress tensor. The effective fluid introduces a counterterm in the solution to the matter continuity and Euler equations, which allows a controlled expansion of clustering statistics on mildly nonlinear scales. We use this setup to compute the one-loop dark-matter power spectrum.
We study the neutrino pairs annihilation into electron-positron pairs ($ u+{bar u}to e^- + e^+$) near the surface of a neutron star. The analysis is performed in the framework of extended theories of gravity. The latter induce a modification of the minimum photon-sphere radius ($R_{ph}$) and the maximum energy deposition rate near to $R_{ph}$, as compared to ones of General Relativity. These results might lead to an efficient mechanism for generating GRBs.
165 - Hao Wei , Shuang Nan Zhang 2008
The current accelerated expansion of our universe could be due to an unknown energy component (dark energy) or a modification to general relativity (modified gravity). In the literature, it has been proposed that combining the probes of the cosmic ex pansion history and growth history can distinguish between dark energy and modified gravity. In this work, without invoking non-trivial dark energy clustering, we show that the possible interaction between dark energy and dark matter could make the interacting dark energy model and the modified gravity model indistinguishable. An explicit example is also given. Therefore, it is required to seek some complementary probes beyond the ones of cosmic expansion history and growth history.
We propose a new cosmological framework in which the strength of the gravitational force acted on dark matter at late time can be weaker than that on the standard matter fields without introducing extra gravitational degrees of freedom. The framework integrates dark matter into a type-II minimally modified gravity that was recently proposed as a dark energy mimicker. The idea that makes such a framework possible consists of coupling a dark matter Lagrangian and a cosmological constant to the metric in a canonically transformed frame of general relativity (GR). On imposing a gauge fixing constraint, which explicitly breaks the temporal diffeomorphism invariance, we keep the number of gravitational degrees of freedom to be two, as in GR. We then make the inverse canonical transformation to bring the theory back to the original frame, where one can add the standard matter fields. This framework contains two free functions of time which specify the generating functional of the above mentioned canonical transformation and which are then used in order to realize desired time evolutions of both the Hubble expansion rate $H(z)$ and the effective gravitational constant for dark matter $G_{rm eff}(z)$. The aim of this paper is therefore to provide a new framework to address the two puzzles present in todays cosmology, i.e. the $H_0$ tension and the $S_8$ tension, simultaneously. When the dark matter is cold in this framework, we dub the corresponding cosmological model the V Canonical Cold Dark Matter (VCCDM), as the cosmological constant $Lambda$ in the standard $Lambda$CDM is replaced by a function $V(phi)$ of an auxiliary field $phi$ and the CDM is minimally coupled to the metric in a canonically transformed frame.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا