ﻻ يوجد ملخص باللغة العربية
Modified Gravity (MG) scenarios have been advocated to account for the dark energy phenomenon in the universe. These models predict departures from General Relativity on large cosmic scales that can be tested through a variety of probes such as observations of galaxy clusters among others. Here, we investigate the imprint of MG models on the internal mass distribution of cluster-like halos as probed by the dark matter halo sparsity. To this purpose we perform a comparative analysis of the properties of the halo sparsity using N-body simulation halo catalogs of a standard flat $Lambda$CDM model and MG scenarios from the DUSTGRAIN-pathfinder simulation suite. We find that the onset of the screening mechanism leaves a distinct signature in the redshift evolution of the ensemble average halos sparsity. Measurements of the sparsity of galaxy clusters from currently available mass estimates are unable to test MG models due to the large uncertainties on the cluster masses. We show that this should be possible in the future provided large cluster samples with cluster masses determined to better than $30%$ accuracy level.
We use a set of N-body simulations employing a modified gravity (MG) model with Vainshtein screening to study matter and halo hierarchical clustering. As test-case scenarios we consider two normal branch Dvali-Gabadadze-Porrati (nDGP) gravity models
Scalar fields coupled to gravity through the Ricci scalar have been considered both as dark matter candidates and as a possible modified gravity explanation for galactic dynamics. It has recently been demonstrated that the dynamics of baryonic matter
We propose a new cosmological framework in which the strength of the gravitational force acted on dark matter at late time can be weaker than that on the standard matter fields without introducing extra gravitational degrees of freedom. The framework
We introduce the idea of {it effective} dark matter halo catalog in $f(R)$ gravity, which is built using the {it effective} density field. Using a suite of high resolution N-body simulations, we find that the dynamical properties of halos, such as th
We present a new cosmological probe for galaxy clusters, the halo sparsity. This characterises halos in terms of the ratio of halo masses measured at two different radii and carries cosmological information encoded in the halo mass profile. Building