ترغب بنشر مسار تعليمي؟ اضغط هنا

Angular Momentum Acquisition in Galaxy Halos

142   0   0.0 ( 0 )
 نشر من قبل Kyle Stewart
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Kyle R. Stewart




اسأل ChatGPT حول البحث

We use high-resolution cosmological hydrodynamic simulations to study the angular momentum acquisition of gaseous halos around Milky Way sized galaxies. We find that cold mode accreted gas enters a galaxy halo with ~70% more specific angular momentum than dark matter averaged over cosmic time (though with a very large dispersion). In fact, we find that all matter has a higher spin parameter when measured at accretion than when averaged over the entire halo lifetime, and is well characterized by lambda~0.1, at accretion. Combined with the fact that cold flow gas spends a relatively short time (1-2 dynamical times) in the halo before sinking to the center, this naturally explains why cold flow halo gas has a specific angular momentum much higher than that of the halo and often forms cold flow disks. We demonstrate that the higher angular momentum of cold flow gas is related to the fact that it tends to be accreted along filaments.



قيم البحث

اقرأ أيضاً

149 - Laura G. Book 2010
We have analyzed high resolution N-body simulations of dark matter halos, focusing specifically on the evolution of angular momentum. We find that not only is individual particle angular momentum not conserved, but the angular momentum of radial shel ls also varies over the age of the Universe by up to factors of a few. We find that torques from external structure are the most likely cause for this distribution shift. Since the model of adiabatic contraction that is often applied to model the effects of galaxy evolution on the dark-matter density profile in a halo assumes angular momentum conservation, this variation implies that there is a fundamental limit on the possible accuracy of the adiabatic contraction model in modeling the response of DM halos to the growth of galaxies.
The total specific angular momentum j of a galaxy disk is matched with that of its dark matter halo, but the distributions are different, in that there is a lack of both low- and high-j baryons with respect to the CDM predictions. I illustrate how th e probability density function PDF(j/j_mean) can inform us of a galaxys morphology and evolutionary history with a spanning set of examples from present-day galaxies and a galaxy at z~1.5. The shape of PDF(j/j_mean) is correlated with photometric morphology, with disk-dominated galaxies having more symmetric PDF(j/j_mean) and bulge-dominated galaxies having a strongly-skewed PDF(j/j_mean). Galaxies with bigger bulges have more strongly-tailed PDF(j/j_mean), but disks of all sizes have a similar PDF(j/j_mean). In future, PDF(j/j_mean) will be useful as a kinematic decomposition tool.
84 - M. Vitvitska 2001
We propose a new explanation for the origin of angular momentum in galaxies and their dark halos, in which the halos obtain their spin through the cumulative acquisition of angular momentum from satellite accretion. In our model, the build-up of angu lar momentum is a random walk process associated with the mass assembly history of the halos major progenitor. We assume no correlation between the angular momenta of accreted objects. Using the extended Press-Schechter approximation, we calculate the growth of mass, angular momentum, and spin parameter $lambda$ for many halos. Our random walk model reproduces the key features of the angular momentum of halos found in N-body simulations: a lognormal distribution in $lambda$ with an average of $<lambda> approx 0.04$, independent of mass and redshift. The evolution of the spin parameter in individual halos in this model is quite different from the steady increase with time of angular momentum in the tidal torque picture. We find both in N-body simulations and in our random walk model that the value of $lambda$ changes significantly with time for a halos major progenitor. It typically has a sharp increase due to major mergers, and a steady decline during periods of gradual accretion of small satellites. The model predicts that on average the $lambda$ of halos which had major mergers after redshift $z=2$ should be substantially larger than the $lambda$ of those which did not. Perhaps surprisingly, this suggests that halos that host late-forming elliptical galaxies should rotate faster than halos of spiral galaxies.
123 - James S. Bullock 2000
[Abridged] We study the angular-momentum profiles of a statistical sample of halos drawn from a high-resolution N-body simulation of the LCDM cosmology. We find that the cumulative mass distribution of specific angular momentum, j, in a halo of mass Mv is well fit by a universal function, M(<j) = Mv mu j/(j_0+j). This profile is defined by one shape parameter (mu or j_0) in addition to the global spin parameter lambda. It follows a power-law over most of the mass, and flattens at large j, with the flattening more pronounced for small values of mu. Compared to a uniform sphere in solid-body rotation, most halos have a higher fraction of their mass in the low- and high-j tails of the distribution. The spatial distribution of angular momentum in halos tends to be cylindrical and is well-aligned within each halo for ~80% of the halos. We investigate two ideas for the origin of this profile. The first is based on a revised version of linear tidal-torque theory combined with extended Press-Schechter mass accretion, and the second focuses on j transport in minor mergers. Finally, we briefly explore implications of the M(<j) profile on the formation of galactic disks assuming that j is conserved during an adiabatic baryonic infall. The implied gas density profile deviates from an exponential disk, with a higher density at small radii and a tail extending to large radii. The steep central density profiles may imply disk scale lengths that are smaller than observed. This is reminiscent of the angular-momentum problem seen in hydrodynamic simulations, even though we have assumed perfect j conservation. A possible solution is to associate the central excesses with bulge components and the outer regions with extended gaseous disks.
Feedback from energy liberated by gas accretion onto black holes (BHs) is an attractive mechanism to explain the exponential cut-off at the massive end of the galaxy stellar mass function (SMF). Semi-analytic models of galaxy formation in which this form of feedback is assumed to suppress cooling in haloes where the gas cooling time is large compared to the dynamical time do indeed achieve a good match to the observed SMF. Furthermore, hydrodynamic simulations of individual halos in which gas is assumed to accrete onto the central BH at the Bondi rate have shown that a self-regulating regime is established in which the BH grows just enough to liberate an amount of energy comparable to the thermal energy of the halo. However, this process is efficient at suppressing the growth not only of massive galaxies but also of galaxies like the Milky Way, leading to disagreement with the observed SMF. The Bondi accretion rate, however, is inappropriate when the accreting material has angular momentum. We present an improved accretion model that takes into account the circularisation and subsequent viscous transport of infalling material and include it as a subgrid model in hydrodynamic simulations of the evolution of halos with a wide range of masses. The resulting accretion rates are generally low in low mass ($lsim 10^{11.5} msun$) halos, but show outbursts of Eddington-limited accretion during galaxy mergers. During outbursts these objects strongly resemble quasars. In higher mass haloes, gas accretion occurs continuously, typically at $~10$ % of the Eddington rate, which is conducive to the formation of radio jets. The resulting dependence of the accretion behaviour on halo mass induces a break in the relation between galaxy stellar mass and halo mass in these simulations that matches observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا