ترغب بنشر مسار تعليمي؟ اضغط هنا

A universal angular momentum profile for galactic halos

124   0   0.0 ( 0 )
 نشر من قبل James S. Bullock
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English
 تأليف James S. Bullock




اسأل ChatGPT حول البحث

[Abridged] We study the angular-momentum profiles of a statistical sample of halos drawn from a high-resolution N-body simulation of the LCDM cosmology. We find that the cumulative mass distribution of specific angular momentum, j, in a halo of mass Mv is well fit by a universal function, M(<j) = Mv mu j/(j_0+j). This profile is defined by one shape parameter (mu or j_0) in addition to the global spin parameter lambda. It follows a power-law over most of the mass, and flattens at large j, with the flattening more pronounced for small values of mu. Compared to a uniform sphere in solid-body rotation, most halos have a higher fraction of their mass in the low- and high-j tails of the distribution. The spatial distribution of angular momentum in halos tends to be cylindrical and is well-aligned within each halo for ~80% of the halos. We investigate two ideas for the origin of this profile. The first is based on a revised version of linear tidal-torque theory combined with extended Press-Schechter mass accretion, and the second focuses on j transport in minor mergers. Finally, we briefly explore implications of the M(<j) profile on the formation of galactic disks assuming that j is conserved during an adiabatic baryonic infall. The implied gas density profile deviates from an exponential disk, with a higher density at small radii and a tail extending to large radii. The steep central density profiles may imply disk scale lengths that are smaller than observed. This is reminiscent of the angular-momentum problem seen in hydrodynamic simulations, even though we have assumed perfect j conservation. A possible solution is to associate the central excesses with bulge components and the outer regions with extended gaseous disks.

قيم البحث

اقرأ أيضاً

We show that the stellar surface-brightness profiles in disc galaxies---observed to be approximately exponential---can be explained if radial migration efficiently scrambles the individual stars angular momenta while conserving the circularity of the orbits and the total mass and angular momentum. In this case the discs distribution of specific angular momenta $j$ should be near a maximum-entropy state and therefore approximately exponential, $dNproptoexp(-j/langle jrangle)dj$. This distribution translates to a surface-density profile that is generally not an exponential function of radius: $Sigma(R)proptoexp[-R/R_e(R)]/(RR_e(R))(1+dlog v_c(R)/dlog R)$, for a rotation curve $v_c(R)$ and $R_e(R)equivlangle jrangle/v_c(R)$. We show that such a profile matches the observed surface-brightness profiles of disc-dominated galaxies as well as the empirical exponential profile. Disc galaxies that exhibit population gradients cannot have fully reached a maximum-entropy state but appear to be close enough that their surface-brightness profiles are well-fit by this idealized model.
103 - Kyle R. Stewart 2013
We use high-resolution cosmological hydrodynamic simulations to study the angular momentum acquisition of gaseous halos around Milky Way sized galaxies. We find that cold mode accreted gas enters a galaxy halo with ~70% more specific angular momentum than dark matter averaged over cosmic time (though with a very large dispersion). In fact, we find that all matter has a higher spin parameter when measured at accretion than when averaged over the entire halo lifetime, and is well characterized by lambda~0.1, at accretion. Combined with the fact that cold flow gas spends a relatively short time (1-2 dynamical times) in the halo before sinking to the center, this naturally explains why cold flow halo gas has a specific angular momentum much higher than that of the halo and often forms cold flow disks. We demonstrate that the higher angular momentum of cold flow gas is related to the fact that it tends to be accreted along filaments.
91 - Laura G. Book 2010
We have analyzed high resolution N-body simulations of dark matter halos, focusing specifically on the evolution of angular momentum. We find that not only is individual particle angular momentum not conserved, but the angular momentum of radial shel ls also varies over the age of the Universe by up to factors of a few. We find that torques from external structure are the most likely cause for this distribution shift. Since the model of adiabatic contraction that is often applied to model the effects of galaxy evolution on the dark-matter density profile in a halo assumes angular momentum conservation, this variation implies that there is a fundamental limit on the possible accuracy of the adiabatic contraction model in modeling the response of DM halos to the growth of galaxies.
71 - A. Dekel 2000
We summarize recent developments in the study of the origin of halo spin profiles and preliminary implications on disk formation. The specific angular-momentum distributions within halos in N-body simulations match a universal shape, M(<j) propto j/( j_0+j). It is characterized by a power law over most of the mass, and one shape parameter in addition to the spin parameter lambda. The angular momentum tends to be aligned throughout the halo and of cylindrical symmetry. Even if angular momentum is conserved during baryonic infall, the resultant disk density profile is predicted to deviate from exponential, with a denser core and an extended tail. A slightly corrected version of the scaling relation due to linear tidal-torque theory is used to explain the origin of a typical power-law profile in shells, j(M) propto M^s with s gsim 1. While linear theory crudely predicts the amplitudes of halo spins, it is not a good predictor of their directions. Independently, mergers of halos are found to produce a similar profile due to j transfer from the orbit to the product halo via dynamical friction and tidal stripping. The halo spin is correlated with having a recent major merger, though this correlation is weakened by mass loss. These two effects are due to a correlation between the spins of neighboring halos and their orbit, leading to prograde mergers.
84 - M. Vitvitska 2001
We propose a new explanation for the origin of angular momentum in galaxies and their dark halos, in which the halos obtain their spin through the cumulative acquisition of angular momentum from satellite accretion. In our model, the build-up of angu lar momentum is a random walk process associated with the mass assembly history of the halos major progenitor. We assume no correlation between the angular momenta of accreted objects. Using the extended Press-Schechter approximation, we calculate the growth of mass, angular momentum, and spin parameter $lambda$ for many halos. Our random walk model reproduces the key features of the angular momentum of halos found in N-body simulations: a lognormal distribution in $lambda$ with an average of $<lambda> approx 0.04$, independent of mass and redshift. The evolution of the spin parameter in individual halos in this model is quite different from the steady increase with time of angular momentum in the tidal torque picture. We find both in N-body simulations and in our random walk model that the value of $lambda$ changes significantly with time for a halos major progenitor. It typically has a sharp increase due to major mergers, and a steady decline during periods of gradual accretion of small satellites. The model predicts that on average the $lambda$ of halos which had major mergers after redshift $z=2$ should be substantially larger than the $lambda$ of those which did not. Perhaps surprisingly, this suggests that halos that host late-forming elliptical galaxies should rotate faster than halos of spiral galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا