ﻻ يوجد ملخص باللغة العربية
Humans are often incapable of precisely identifying and implementing the desired control strategy in controlling unstable dynamical systems. That is, the operator of a dynamical system treats the current control effort as acceptable even if it deviates slightly from the desired value, and starts correcting the actions only when the deviation has become evident. We argue that the standard Newtonian approach does not allow to model such behavior. Instead, the physical phase space of a controlled system should be extended with an independent phase variable characterizing the operator motivated actions. The proposed approach is illustrated via a simple non-Newtonian model capturing the operators fuzzy perception of their own actions. The properties of the model are investigated analytically and numerically; the results confirm that the extended phase space may aid in capturing the intricate dynamical properties of human-controlled systems.
We propose an entropic geometrical model of psycho-physical crowd dynamics (with dissipative crowd kinematics), using Feynman action-amplitude formalism that operates on three synergetic levels: macro, meso and micro. The intent is to explain the dyn
We study stochastic effects on the lagging anchor dynamics, a reinforcement learning algorithm used to learn successful strategies in iterated games, which is known to converge to Nash points in the absence of noise. The dynamics is stochastic when p
We propose a semi-classical approach based on the Vlasov equation to describe the time-dependent electronic dynamics in a bulk simple metal under an ultrashort intense laser pulse. We include in the effective potential not only the ionic Coulomb pote
We describe how to engineer wavefunction delocalization in disordered systems modelled by tight-binding Hamiltonians in d>1 dimensions. We show analytically that a simple product structure for the random onsite potential energies, together with suita
Social systems must fulfil four basic functions to ensure their survival in competitive conditions. Social systems must provide for: (1) energy and other necessities of life, (2) security against external and internal threats, (3) identity and self-d