ﻻ يوجد ملخص باللغة العربية
We describe how to engineer wavefunction delocalization in disordered systems modelled by tight-binding Hamiltonians in d>1 dimensions. We show analytically that a simple product structure for the random onsite potential energies, together with suitably chosen hopping strengths, allows a resonant scattering process leading to ballistic transport along one direction, and a controlled coexistence of extended Bloch states and anisotropically localized states in the spectrum. We demonstrate that these features persist in the thermodynamic limit for a continuous range of the system parameters. Numerical results support these findings and highlight the robustness of the extended regime with respect to deviations from the exact resonance condition for finite systems. The localization and transport properties of the system can be engineered almost at will and independently in each direction. This study gives rise to the possibility of designing disordered potentials that work as switching devices and band-pass filters for quantum waves, such as matter waves in optical lattices.
It is commonly believed that Anderson localized states and extended states do not coexist at the same energy. Here we propose a simple mechanism to achieve the coexistence of localized and extended states in a band in a class of disordered quasi-1D a
We explore thermalization and quantum dynamics in a one-dimensional disordered SU(2)-symmetric Floquet model, where a many-body localized phase is prohibited by the non-abelian symmetry. Despite the absence of localization, we find an extended nonerg
We study the dynamics of one and two dimensional disordered lattice bosons/fermions initialized to a Fock state with a pattern of $1$ and $0$ particles on $A$ and ${bar A}$ sites. For non-interacting systems we establish a universal relation between
Theoretical studies of localization, anomalous diffusion and ergodicity breaking require solving the electronic structure of disordered systems. We use free probability to approximate the ensemble- averaged density of states without exact diagonaliza
Entanglement is a physical resource of a quantum system just like mass, charge or energy. Moreover it is an essential tool for many purposes of nowadays quantum information processing, e.g. quantum teleportation, quantum cryptography or quantum compu