ﻻ يوجد ملخص باللغة العربية
We propose a semi-classical approach based on the Vlasov equation to describe the time-dependent electronic dynamics in a bulk simple metal under an ultrashort intense laser pulse. We include in the effective potential not only the ionic Coulomb potential and mean-field electronic Coulomb potential from the one-body electron distribution but also the exchange-correlation potential within the local density approximation (LDA). The initial ground state is obtained by the Thomas-Fermi model. To numerically solve the Vlasov equation, we extend the pseudo-particle method, previously used for nuclei and atomic clusters, to solids, taking the periodic boundary condition into account. We apply the present implementation to a bulk aluminum (FCC) conventional unit cell irradiated with a short laser pulse. The optical conductivity, refractive index, extinction coefficient, and reflectivity as well as energy absorption calculated with the Vlasov-LDA method are in excellent agreement with the results by the time-dependent density functional theory and experimental references.
Oblique incidence of a $p$-polarized laser beam on a fully ionized plasma with a low density plasma corona is investigated numerically by Particle-In-Cell and Vlasov simulations in two dimensions. A single narrow self-focused current jet of energetic
We study the ionization dynamics in intense laser-droplet interaction using three-dimensional, relativistic particle-in-cell simulations. Of particular interest is the laser intensity and frequency regime for which initially transparent, wavelength-s
We consider the theoretical description of intense laser pulses propagating through gases. Starting from a first-principles description of both the electromagnetic field and the electron motion within the gas atoms, we derive a hierarchy of reduced m
A microtube implosion driven by ultraintense laser pulses is used to produce ultrahigh magnetic fields. Due to the laser-produced hot electrons with energies of mega-electron volts, cold ions in the inner wall surface implode towards the central axis
Producing inward orientated streams of energetic electrons by intense laser pulses acting on solid targets is the most robust and accessible way of transferring the laser energy to particles, which underlies numerous applications, ranging from TNSA t