ﻻ يوجد ملخص باللغة العربية
The discovery of a 2 Msun neutron star provided a robust constraint for the theory of exotic dense matter, bringing into question the existence of strange baryons in the interiors of neutron stars. Although many theories fail to reproduce this observational result, several equations of state containing hyperons are consistent with it. We study global properties of stars using equations of state containing hyperons, and compare them to those without hyperons to find similarities, differences, and limits that can be compared with the astrophysical observations. Rotating, axisymmetric, and stationary stellar configurations in general relativity are obtained, and their global parameters are studied. Approximate formulae describing the behavior of the maximum and minimum stellar mass, compactness, surface redshifts, and moments of inertia as functions of spin frequency are provided. We also study the thin disk accretion and compare the spin-up evolution of stars with different moments of inertia.
In this work, we study the properties and structure of a massive and rapidly rotating protoneutron star (PNS) with hyperon content. We follow several stages of quasi-stationary evolution in an approximate way at four discrete steps. We use a density-
We calculate Keplerian (mass shedding) configurations of rigidly rotating neutron stars and quark stars with crusts. We check the validity of empirical formula for Keplerian frequency, f_K, proposed by Lattimer & Prakash, f_K(M)=C (M/M_sun)^1/2 (R/10
We have been analyzing a large sample of solar-like stars with and without planets in order to homogeneously measure their photospheric parameters and Carbon abundances. Our sample contains around 200 stars in the solar neighborhood observed with the
The properties of compact stars and their formation processes depend on many physical ingredients. The composition and the thermodynamics of the involved matter is one of them. We will investigate here uniform strongly interacting matter at densities
Supernova fallback disks around neutron stars have been discussed to influence the evolution of the diverse neutron star populations. Slowly rotating neutron stars are most promising to find such disks. Searching for the cold and warm debris of old f