ﻻ يوجد ملخص باللغة العربية
We calculate Keplerian (mass shedding) configurations of rigidly rotating neutron stars and quark stars with crusts. We check the validity of empirical formula for Keplerian frequency, f_K, proposed by Lattimer & Prakash, f_K(M)=C (M/M_sun)^1/2 (R/10km)^-3/2, where M is the (gravitational) mass of Keplerian configuration, R is the (circumferential) radius of the non-rotating configuration of the same gravitational mass, and C = 1.04 kHz. Numerical calculations are performed using precise 2-D codes based on the multi-domain spectral methods. We use a representative set of equations of state (EOSs) of neutron stars and quark stars. We show that the empirical formula for f_K(M) holds within a few percent for neutron stars with realistic EOSs, provided 0.5 M_sun < M < 0.9 M_max,stat, where M_max,stat is the maximum allowable mass of non-rotating neutron stars for an EOS, and C=C_NS=1.08 kHz. Similar precision is obtained for quark stars with 0.5 M_sun < M < 0.9 M_max,stat. For maximal crust masses we obtain C_QS = 1.15 kHz, and the value of C_QS is not very sensitive to the crust mass. All our Cs are significantly larger than the analytic value from the relativistic Roche model, C_Roche = 1.00 kHz. For 0.5 M_sun < M < 0.9 M_max,stat, the equatorial radius of Keplerian configuration of mass M, R_K(M), is, to a very good approximation, proportional to the radius of the non-rotating star of the same mass, R_K(M) = aR(M), with a_NS approx a_QS approx 1.44. The value of a_QS is very weakly dependent on the mass of the crust of the quark star. Both as are smaller than the analytic value a_Roche = 1.5 from the relativistic Roche model.
In this paper, we use a three flavor non-local Nambu--Jona-Lasinio (NJL) model, an~improved effective model of Quantum Chromodynamics (QCD) at low energies, to investigate the existence of deconfined quarks in the cores of neutron stars. Particular e
The rotating neutron star properties are studied with a phase transition to quark matter. The density-dependent relativistic mean-field model (DD-RMF) is employed to study the hadron matter, while the Vector-Enhanced Bag model (vBag) model is used to
We discuss new limits on masses and radii of compact stars and we conclude that they can be interpreted as an indication of the existence of two classes of stars: normal compact stars and ultra-compact stars. We estimate the critical mass at which the first configuration collapses into the second.
We use perturbation theory and the relativistic Cowling approximation to numerically compute characteristic oscillation modes of rapidly rotating relativistic stars which consist of a perfect fluid obeying a polytropic equation of state. We present a
The discovery of a 2 Msun neutron star provided a robust constraint for the theory of exotic dense matter, bringing into question the existence of strange baryons in the interiors of neutron stars. Although many theories fail to reproduce this observ