ترغب بنشر مسار تعليمي؟ اضغط هنا

Hyperons in neutron stars and supernova cores

68   0   0.0 ( 0 )
 نشر من قبل Micaela Oertel
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The properties of compact stars and their formation processes depend on many physical ingredients. The composition and the thermodynamics of the involved matter is one of them. We will investigate here uniform strongly interacting matter at densities and temperatures, where potentially other components than free nucleons appear such as hyperons, mesons or even quarks. In this paper we will put the emphasis on two aspects of stellar matter with non-nucleonic degrees of freedom. First, we will study the phase diagram of baryonic matter with strangeness, showing that the onset of hyperons, as that of quark matter, could be related to a very rich phase structure with a large density domain covered by phase coexistence. Second, we will investigate thermal effects on the equation of state (EoS), showing that they favor the appearance of non-nucleonic particles. We will finish by reviewing some recent results on the impact of non-nucleonic degrees freedom in compact star mergers and core-collapse events, where thermal effects cannot be neglected.

قيم البحث

اقرأ أيضاً

The rotating neutron star properties are studied with a phase transition to quark matter. The density-dependent relativistic mean-field model (DD-RMF) is employed to study the hadron matter, while the Vector-Enhanced Bag model (vBag) model is used to study the quark matter. The star matter properties like mass, radius,the moment of inertia, rotational frequency, Kerr parameter, and other important quantities are studied to see the effect on quark matter. The maximum mass of rotating neutron star with DD-LZ1 and DD-MEX parameter sets is found to be around 3$M_{odot}$ for pure hadronic phase and decreases to a value around 2.6$M_{odot}$ with phase transition to quark matter, which satisfies the recent GW190814 constraints. For DDV, DDVT, and DDVTD parameter sets, the maximum mass decreases to satisfy the 2$M_{odot}$. The moment of inertia calculated for various DD-RMF parameter sets decreases with the increasing mass satisfying constraints from various measurements. Other important quantities calculated also vary with the bag constant and hence show that the presence of quarks inside neutron stars can also allow us to constraint these quantities to determine a proper EoS. Also, the theoretical study along with the accurate measurement of uniformly rotating neutron star properties may offer some valuable information concerning the high-density part of the equation of state.
The structure of neutron stars is determined by the equation of state of the matter inside the star, which relies on the knowledge of nuclear interactions. While radii of neutron stars mostly depend on the equation of state of neutron matter at nucle ar densities, their maximum mass can be drastically affected by the appearance of hyperons at higher densities in the inner core of the star. We summarize recent quantum Monte Carlo results on the calculation of the equation of state of neutron matter at nuclear and higher densities. We report about the development of realistic hyperon-nucleon interactions based on the available experimental data for light- and medium-heavy hypernuclei and on the effect of $Lambda$ hyperons to the neutron star structure.
61 - M. Bejger 2012
The discovery of a 2 Msun neutron star provided a robust constraint for the theory of exotic dense matter, bringing into question the existence of strange baryons in the interiors of neutron stars. Although many theories fail to reproduce this observ ational result, several equations of state containing hyperons are consistent with it. We study global properties of stars using equations of state containing hyperons, and compare them to those without hyperons to find similarities, differences, and limits that can be compared with the astrophysical observations. Rotating, axisymmetric, and stationary stellar configurations in general relativity are obtained, and their global parameters are studied. Approximate formulae describing the behavior of the maximum and minimum stellar mass, compactness, surface redshifts, and moments of inertia as functions of spin frequency are provided. We also study the thin disk accretion and compare the spin-up evolution of stars with different moments of inertia.
Precision mass spectrometry of neutron-rich nuclei is of great relevance for astrophysics. Masses of exotic nuclides impose constraints on models for the nuclear interaction and thus affect the description of the equation of state of nuclear matter, which can be extended to describe neutron-star matter. With knowledge of the masses of nuclides near shell closures, one can also derive the neutron-star crustal composition. The Penning-trap mass spectrometer ISOLTRAP at CERN-ISOLDE has recently achieved a breakthrough measuring the mass of 82Zn, which allowed constraining neutron-star crust composition to deeper layers (Wolf et al., PRL 110, 2013). We perform a more detailed study on the sequence of nuclei in the outer crust of neutron stars with input from different nuclear models to illustrate the sensitivity to masses and the robustness of neutron-star models. The dominant role of the N=50 and N=82 closed neutron shells for the crustal composition is confirmed.
Neutrino emissivities in a neutron star are computed for the neutrino bremsstrahlung process. In the first part the electro-weak nucleon-nucleon bremsstrahlung is calculated in free space in terms of a on-shell $T$-matrix using a generalized Low ener gy theorem. In the second part the emissivities are calculated in terms of the hadronic polarization at the two-loop level. Various medium effects, such as finite particle width, Pauli blocking in the $T$-matrix are considered. Compared to the pioneering work of Friman and Maxwell in terms of (anti-symmetrized) one-pion exchange the resulting emissivity is about a factor 4 smaller at saturation density.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا