ترغب بنشر مسار تعليمي؟ اضغط هنا

Simulations of the galaxy population constrained by observations from z=3 to the present day: implications for galactic winds and the fate of their ejecta

45   0   0.0 ( 0 )
 نشر من قبل Bruno Henriques
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Bruno Henriques




اسأل ChatGPT حول البحث

We apply Monte Carlo Markov Chain (MCMC) methods to large-scale simulations of galaxy formation in a LambdaCDM cosmology in order to explore how star formation and feedback are constrained by the observed luminosity and stellar mass functions of galaxies. We build models jointly on the Millennium and Millennium-II simulations, applying fast sampling techniques which allow observed galaxy abundances over the ranges 7<log(M*/Msun)<12 and z=0 to z=3 to be used simultaneously as constraints in the MCMC analysis. When z=0 constraints alone are imposed, we reproduce the results of previous modelling by Guo et al. (2012), but no single set of parameters can reproduce observed galaxy abundances at all redshifts simultaneously, reflecting the fact that low-mass galaxies form too early and thus are overabundant at high redshift in this model. The data require the efficiency with which galactic wind ejecta are reaccreted to vary with redshift and halo mass quite differently than previously assumed, but in a similar way as in some recent hydrodynamic simulations of galaxy formation. We propose a specific model in which reincorporation timescales vary inversely with halo mass and are independent of redshift. This produces an evolving galaxy population which fits observed abundances as a function of stellar mass, B- and K-band luminosity at all redshifts simultaneously. It also produces a significant improvement in two other areas where previous models were deficient. It leads to present day dwarf galaxy populations which are younger, bluer, more strongly star-forming and more weakly clustered on small scales than before, although the passive fraction of faint dwarfs remains too high.

قيم البحث

اقرأ أيضاً

136 - Reynier Peletier 2009
Although there are many more stellar population studies of elliptical and lenticular galaxies, studies of spiral galaxies are catching up, due to higher signal to noise data on one hand, and better analysis methods on the other. Here I start by discu ssing some modern methods of analyzing integrated spectra of spiral galaxies, and comparing them with traditional methods. I then discuss some recent developments in our understanding of the stellar content of spiral galaxies, and their associated dust content. I discuss star formation histories, radial stellar population gradients, and stellar populations in sigma drops.
The uniformity of the intra-cluster medium (ICM) enrichment level in the outskirts of nearby galaxy clusters suggests that chemical elements were deposited and widely spread into the intergalactic medium before the cluster formation. This observation al evidence is supported by numerical findings from cosmological hydrodynamical simulations, as presented in Biffi et al. (2017), including the effect of thermal feedback from active galactic nuclei. Here, we further investigate this picture, by tracing back in time the spatial origin and metallicity evolution of the gas residing at z=0 in the outskirts of simulated galaxy clusters. In these regions, we find a large distribution of iron abundances, including a component of highly-enriched gas, already present at z=2. At z>1, the gas in the present-day outskirts was distributed over tens of virial radii from the the main cluster and had been already enriched within high-redshift haloes. At z=2, about 40% of the most Fe-rich gas at z=0 was not residing in any halo more massive than 1e11 Msun/h in the region and yet its average iron abundance was already 0.4, w.r.t. the solar value by Anders & Grevesse (1989). This confirms that the in situ enrichment of the ICM in the outskirts of present-day clusters does not play a significant role, and its uniform metal abundance is rather the consequence of the accretion of both low-metallicity and pre-enriched (at z>2) gas, from the diffuse component and through merging substructures. These findings do not depend on the mass of the cluster nor on its core properties.
Utilising optical and near-infrared broadband photometry covering $> 5,{rm deg}^2$ in two of the most well-studied extragalactic legacy fields (COSMOS and XMM-LSS), we measure the galaxy stellar mass function (GSMF) between $0.1 < z < 2.0$. We explor e in detail the effect of two source extraction methods (SExtractor and ProFound) in addition to the inclusion/exclusion of Spitzer IRAC 3.6 and 4.5$mu$m photometry when measuring the GSMF. We find that including IRAC data reduces the number of massive ($log_{10}(M/M_odot) > 11.25$) galaxies found due to improved photometric redshift accuracy, but has little effect on the more numerous lower-mass galaxies. We fit the resultant GSMFs with double Schechter functions down to $log_{10}(M/M_odot)$ = 7.75 (9.75) at z = 0.1 (2.0) and find that the choice of source extraction software has no significant effect on the derived best-fit parameters. However, the choice of methodology used to correct for the Eddington bias has a larger impact on the high-mass end of the GSMF, which can partly explain the spread in derived $M^*$ values from previous studies. Using an empirical correction to model the intrinsic GSMF, we find evidence for an evolving characteristic stellar mass with $delta log_{10}(M^*/M_odot)/delta z$ = $-0.16pm0.05 , (-0.11pm0.05)$, when using SExtractor (ProFound). We argue that with widely quenched star formation rates in massive galaxies at low redshift ($z<0.5$), additional growth via mergers is required in order to sustain such an evolution to a higher characteristic mass.
Galaxy clusters can play a key role in modern cosmology provided their evolution is properly understood. However, observed clusters give us only a single timeframe of their dynamical state. Therefore, finding present observable data of clusters that are well correlated to their assembly history constitutes an inestimable tool for cosmology. Former studies correlating environmental descriptors of clusters to their formation history are dominated by halo mass - environment relations. This paper presents a mass-free correlation between the present neighbor distribution of cluster-size halos and the latter mass assembly history. From the Big Multidark simulation, we extract two large samples of random halos with masses ranging from Virgo to Coma cluster sizes. Additionally, to find the main environmental culprit for the formation history of the Virgo cluster, we compare the Virgo-size halos to 200 Virgo-like halos extracted from simulations that resemble the local Universe. The number of neighbors at different cluster-centric distances permits discriminating between clusters with different mass accretion histories. Similarly to Virgo-like halos, clusters with numerous neighbors within a distance of about 2 times their virial radius experience a transition at z~1 between an active period of mass accretion, relative to the mean, and a quiet history. On the contrary, clusters with few neighbors share an opposite trend: from passive to active assembly histories. Additionally, clusters with massive companions within about 4 times their virial radius tend to have recent active merging histories. Therefore, the radial distribution of cluster neighbors provides invaluable insights into the past history of these objects.
Despite containing about a half of the total matter in the Universe, at most wavelengths the filamentary structure of the cosmic web is difficult to observe. In this work, we use large unigrid cosmological simulations to investigate how the geometric al, thermodynamical and magnetic properties of cosmological filaments vary with mass and redshift (z $leq 1$). We find that the average temperature, length, volume and magnetic field of filaments are tightly log-log correlated with the underlying total gravitational mass. This reflects the role of self-gravity in shaping their properties and enables statistical predictions of their observational properties based on their mass. We also focus on the properties of the simulated population of galaxy-sized halos within filaments, and compare their properties to the results obtained from the spectroscopic GAMA survey. Simulated and observed filaments with the same length are found to contain an equal number of galaxies, with very similar distribution of halo masses. The total number of galaxies within each filament and the total/average stellar mass in galaxies can now be used to predict also the large-scale properties of the gas in the host filaments across tens or hundreds of Mpc in scale. These results are the first steps towards the future use of galaxy catalogues in order to select the best targets for observations of the warm-hot intergalactic medium.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا