ترغب بنشر مسار تعليمي؟ اضغط هنا

The Past History of Galaxy Clusters told by their present neighbors

114   0   0.0 ( 0 )
 نشر من قبل Jenny Sorce Dr.
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Galaxy clusters can play a key role in modern cosmology provided their evolution is properly understood. However, observed clusters give us only a single timeframe of their dynamical state. Therefore, finding present observable data of clusters that are well correlated to their assembly history constitutes an inestimable tool for cosmology. Former studies correlating environmental descriptors of clusters to their formation history are dominated by halo mass - environment relations. This paper presents a mass-free correlation between the present neighbor distribution of cluster-size halos and the latter mass assembly history. From the Big Multidark simulation, we extract two large samples of random halos with masses ranging from Virgo to Coma cluster sizes. Additionally, to find the main environmental culprit for the formation history of the Virgo cluster, we compare the Virgo-size halos to 200 Virgo-like halos extracted from simulations that resemble the local Universe. The number of neighbors at different cluster-centric distances permits discriminating between clusters with different mass accretion histories. Similarly to Virgo-like halos, clusters with numerous neighbors within a distance of about 2 times their virial radius experience a transition at z~1 between an active period of mass accretion, relative to the mean, and a quiet history. On the contrary, clusters with few neighbors share an opposite trend: from passive to active assembly histories. Additionally, clusters with massive companions within about 4 times their virial radius tend to have recent active merging histories. Therefore, the radial distribution of cluster neighbors provides invaluable insights into the past history of these objects.

قيم البحث

اقرأ أيضاً

How did the dwarf galaxy population of present-day galaxy clusters form and grow over time? We address this question by analysing the history of dark matter subhaloes in the Millennium-II cosmological simulation. A semi-analytic model serves as the l ink to observations. We argue that a reasonable analogue to early morphological types or red-sequence dwarf galaxies are those subhaloes that experienced strong mass loss, or alternatively those that have spent a long time in massive haloes. This approach reproduces well the observed morphology-distance relation of dwarf galaxies in the Virgo and Coma clusters, and thus provides insight into their history. Over their lifetime, present-day late types have experienced an amount of environmental influence similar to what the progenitors of dwarf ellipticals had already experienced at redshifts above two. Therefore, dwarf ellipticals are more likely to be a result of early and continuous environmental influence in group- and cluster-size haloes, rather than a recent transformation product. The observed morphological sequences of late-type and early-type galaxies have developed in parallel, not consecutively. Consequently, the characteristics of todays late-type galaxies are not necessarily representative for the progenitors of todays dwarf ellipticals. Studies aiming to reproduce the present-day dwarf population thus need to start at early epochs, model the influence of various environments, and also take into account the evolution of the environments themselves.
Using the VINTERGATAN cosmological zoom simulation, we explore the contributions of the in situ and accreted material, and the effect of galaxy interactions and mergers in the assembly of a Milky Way-like galaxy. We find that the initial growth phase of galaxy evolution, dominated by repeated major mergers, provides the necessary physical conditions for the assembly of a thick, kinematically hot disk populated by high-[$alpha$/Fe] stars, formed both in situ and in accreted satellite galaxies. We find that the diversity of evolutionary tracks followed by the simulated galaxy and its progenitors leads to very little overlap of the in situ and accreted populations for any given chemical composition. At a given age, the spread in [$alpha$/Fe] abundance ratio results from the diversity of physical conditions in VINTERGATAN and its satellites, with an enhancement in [$alpha$/Fe] found in stars formed during starburst episodes. Later, the cessation of the merger activity promotes the in situ formation of stars in the low-[$alpha$/Fe] regime, in a radially extended, thin and overall kinematically colder disk, thus establishing chemically bimodal thin and thick disks, in line with observations. We draw links between notable features in the [Fe/H] - [$alpha$/Fe] plane with their physical causes, and propose a comprehensive formation scenario explaining self-consistently, in the cosmological context, the main observed properties of the Milky Way.
We present the analysis of deep X-ray observations of 10 massive galaxy clusters at redshifts $1.05 < z < 1.71$, with the primary goal of measuring the metallicity of the intracluster medium (ICM) at intermediate radii, to better constrain models of the metal enrichment of the intergalactic medium. The targets were selected from X-ray and Sunyaev-Zeldovich (SZ) effect surveys, and observed with both the textit{XMM-Newton} and textit{Chandra} satellites. For each cluster, a precise gas mass profile was extracted, from which the value of $r_{500}$ could be estimated. This allows us to define consistent radial ranges over which the metallicity measurements can be compared. In general, the data are of sufficient quality to extract meaningful metallicity measurements in two radial bins, $r<0.3r_{500}$ and $0.3<r/r_{500}<1.0$. For the outer bin, the combined measurement for all ten clusters, $Z/Z_{odot} = 0.21 pm 0.09$, represents a substantial improvement in precision over previous results. This measurement is consistent with, but slightly lower than, the average metallicity of 0.315 Solar measured at intermediate-to-large radii in low-redshift clusters. Combining our new high-redshift data with the previous low-redshift results allows us to place the tightest constraints to date on models of the evolution of cluster metallicity at intermediate radii. Adopting a power law model of the form $Z propto left(1+zright)^gamma$, we measure a slope $gamma = -0.5^{+0.4}_{-0.3}$, consistent with the majority of the enrichment of the ICM having occurred at very early times and before massive clusters formed, but leaving open the possibility that some additional enrichment in these regions may have occurred since a redshift of 2.
Cyanopolyynes are chains of carbon atoms with an atom of hydrogen and a CN group on either side. They are detected almost everywhere in the ISM, as well as in comets. In the past, they have been used to constrain the age of some molecular clouds, sin ce their abundance is predicted to be a strong function of time. We present an extensive study of the cyanopolyynes distribution in the solar-type protostar IRAS16293-2422 based on TIMASSS IRAM-30m observations. The goals are (i) to obtain a census of the cyanopolyynes in this source and of their isotopologues; (ii) to derive how their abundance varies across the protostar envelope; and (iii) to obtain constraints on the history of IRAS16293-2422. We detect several lines from HC3N and HC5N, and report the first detection of DC3N, in a solar-type protostar. We found that the HC3N abundance is roughly constant (~1.3x10^(-11)) in the outer cold envelope of IRAS16293-2422, and it increases by about a factor 100 in the inner region where Tdust>80K. The HC5N has an abundance similar to HC3N in the outer envelope and about a factor of ten lower in the inner region. The HC3N abundance derived in the inner region, and where the increase occurs, also provide strong constraints on the time taken for the dust to warm up to 80K, which has to be shorter than ~10^3-10^4yr. Finally, the cyanoacetylene deuteration is about 50% in the outer envelope and <5$% in the warm inner region. The relatively low deuteration in the warm region suggests that we are witnessing a fossil of the HC3N abundantly formed in the tenuous phase of the pre-collapse and then frozen into the grain mantles at a later phase. The accurate analysis of the cyanopolyynes in IRAS16293-2422 unveils an important part of its past story. It tells us that IRAS16293-2422 underwent a relatively fast (<10^5yr) collapse and a very fast (<10^3-10^4yr) warming up of the cold material to 80K.
Galaxies and clusters embedded in the large-scale structure of the Universe are observed to align in preferential directions. Galaxy alignment has been established as a potential probe for cosmological information, but the application of cluster alig nments for these purposes remains unexplored. Clusters are observed to have a higher alignment amplitude than galaxies, but because galaxies are much more numerous, the trade-off in detectability between the two signals remains unclear. We present forecasts comparing cluster and galaxy alignments for two extragalactic survey set-ups: a currently-available low redshift survey (SDSS) and an upcoming higher redshift survey (LSST). For SDSS, we rely on the publicly available redMaPPer catalogue to describe the cluster sample. For LSST, we perform estimations of the expected number counts while we extrapolate the alignment measurements from SDSS. Clusters in SDSS have typically higher alignment signal-to-noise than galaxies. For LSST, the cluster alignment signals quickly wash out with redshift due to a relatively low number count and a decreasing alignment amplitude. Nevertheless, a potential strong-suit of clusters is in their interplay with weak lensing: intrinsic alignments can be more easily isolated for clusters than for galaxies. The signal-to-noise of cluster alignment can in general be improved by isolating close pairs along the line of sight.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا