ترغب بنشر مسار تعليمي؟ اضغط هنا

Evolution of the galaxy stellar mass function: evidence for an increasing $M^*$ from $z=2$ to the present day

120   0   0.0 ( 0 )
 نشر من قبل Nathan Adams
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Utilising optical and near-infrared broadband photometry covering $> 5,{rm deg}^2$ in two of the most well-studied extragalactic legacy fields (COSMOS and XMM-LSS), we measure the galaxy stellar mass function (GSMF) between $0.1 < z < 2.0$. We explore in detail the effect of two source extraction methods (SExtractor and ProFound) in addition to the inclusion/exclusion of Spitzer IRAC 3.6 and 4.5$mu$m photometry when measuring the GSMF. We find that including IRAC data reduces the number of massive ($log_{10}(M/M_odot) > 11.25$) galaxies found due to improved photometric redshift accuracy, but has little effect on the more numerous lower-mass galaxies. We fit the resultant GSMFs with double Schechter functions down to $log_{10}(M/M_odot)$ = 7.75 (9.75) at z = 0.1 (2.0) and find that the choice of source extraction software has no significant effect on the derived best-fit parameters. However, the choice of methodology used to correct for the Eddington bias has a larger impact on the high-mass end of the GSMF, which can partly explain the spread in derived $M^*$ values from previous studies. Using an empirical correction to model the intrinsic GSMF, we find evidence for an evolving characteristic stellar mass with $delta log_{10}(M^*/M_odot)/delta z$ = $-0.16pm0.05 , (-0.11pm0.05)$, when using SExtractor (ProFound). We argue that with widely quenched star formation rates in massive galaxies at low redshift ($z<0.5$), additional growth via mergers is required in order to sustain such an evolution to a higher characteristic mass.



قيم البحث

اقرأ أيضاً

106 - F. Pozzi , F. Calura , G. Zamorani 2019
We derive for the first time the dust mass function (DMF) in a wide redshift range, from z~0.2 up to z~2.5. In order to trace the dust emission, we start from a far-IR (160-um) Herschel selected catalogue in the COSMOS field. We estimate the dust mas ses by fitting the far-IR data (lam_rest>50um) with a modified black body function and we present a detailed analysis to take into account the incompleteness in dust masses from a far-IR perspective. By parametrizing the observed DMF with a Schechter function in the redshift range 0.1<z<0.25, where we are able to sample faint dust masses, we measure a steep slope (alpha~1.48), as found by the majority of works in the Local Universe. We detect a strong dust mass evolution, with M_d^star at z~2.5 almost one dex larger than in the local Universe, combined with a decrease in their number density. Integrating our DMFs we estimate the dust mass density (DMD), finding a broad peak at z~1, with a decrease by a factor of ~3 towards z~0 and z~2.5. In general, the trend found for the DMD mostly agrees with the derivation of Driver et al. (2018), another DMD determination based also on far-IR detections, and with other measures based on indirect tracers.
We derive the low redshift galaxy stellar mass function (GSMF), inclusive of dust corrections, for the equatorial Galaxy And Mass Assembly (GAMA) dataset covering 180 deg$^2$. We construct the mass function using a density-corrected maximum volume me thod, using masses corrected for the impact of optically thick and thin dust. We explore the galactic bivariate brightness plane ($M_star-mu$), demonstrating that surface brightness effects do not systematically bias our mass function measurement above 10$^{7.5}$ M$_{odot}$. The galaxy distribution in the $M-mu$-plane appears well bounded, indicating that no substantial population of massive but diffuse or highly compact galaxies are systematically missed due to the GAMA selection criteria. The GSMF is {fit with} a double Schechter function, with $mathcal M^star=10^{10.78pm0.01pm0.20}M_odot$, $phi^star_1=(2.93pm0.40)times10^{-3}h_{70}^3$Mpc$^{-3}$, $alpha_1=-0.62pm0.03pm0.15$, $phi^star_2=(0.63pm0.10)times10^{-3}h_{70}^3$Mpc$^{-3}$, and $alpha_2=-1.50pm0.01pm0.15$. We find the equivalent faint end slope as previously estimated using the GAMA-I sample, although we find a higher value of $mathcal M^star$. Using the full GAMA-II sample, we are able to fit the mass function to masses as low as $10^{7.5}$ $M_odot$, and assess limits to $10^{6.5}$ $M_odot$. Combining GAMA-II with data from G10-COSMOS we are able to comment qualitatively on the shape of the GSMF down to masses as low as $10^{6}$ $M_odot$. Beyond the well known upturn seen in the GSMF at $10^{9.5}$ the distribution appears to maintain a single power-law slope from $10^9$ to $10^{6.5}$. We calculate the stellar mass density parameter given our best-estimate GSMF, finding $Omega_star= 1.66^{+0.24}_{-0.23}pm0.97 h^{-1}_{70} times 10^{-3}$, inclusive of random and systematic uncertainties.
In Sedgwick et al. (2019) we introduced and utilised a method to combat surface brightness and mass biases in galaxy sample selection, using core-collapse supernovae (CCSNe) as pointers towards their host galaxies, in order to: (i) search for low-sur face brightness galaxies (LSBGs); (ii) assess the contributions of galaxies at a given mass to the star-formation-rate density (SFRD); and (iii) infer from this, using estimates of specific star-formation (SF) rate, the form of the SF-galaxy stellar mass function (GSMF). A CCSN-selection of SF-galaxies allows a probe of the form of the SFRD and GSMF deep into the dwarf galaxy mass regime. In the present work, we give improved constraints on our estimates of the SFRD and star-forming GSMF, in light of improved photometric redshift estimates required for estimates of galaxy stellar mass. The results are consistent with a power-law increase to SF-galaxy number density down to our low stellar mass limit of $sim 10^{6.2}$ M$_{odot}$. No deviation from the high-mass version of the surface brightness - mass relation is found in the dwarf mass regime. These findings imply no truncation to galaxy formation processes at least down to $sim 10^{6.2}$ M$_{odot}$.
We present the results of a search for bright (-22.7 < M_UV < -20.5) Lyman-break galaxies at z ~ 6 within a total of 1.65 square degrees of imaging in the UltraVISTA/COSMOS and UKIDSS UDS/SXDS fields. The deep near-infrared imaging available in the t wo independent fields, in addition to deep optical (including z-band) data, enables the sample of z ~ 6 star-forming galaxies to be securely detected long-ward of the break (in contrast to several previous studies). We show that the expected contamination rate of our initial sample by cool galactic brown dwarfs is < 3 per cent and demonstrate that they can be effectively removed by fitting brown dwarf spectral templates to the photometry. At z ~ 6 the galaxy surface density in the UltraVISTA field exceeds that in the UDS by a factor of ~ 1.8, indicating strong cosmic variance even between degree-scale fields at z > 5. We calculate the bright end of the rest-frame Ultra-Violet (UV) luminosity function (LF) at z ~ 6. The galaxy number counts are a factor of ~1.7 lower than predicted by the recent LF determination by Bouwens et al.. In comparison to other smaller area studies, we find an evolution in the characteristic magnitude between z ~ 5 and z ~ 7 of dM* ~ 0.4 mag, and show that a double power-law or a Schechter function can equally well describe the LF at z = 6. Furthermore, the bright-end of the LF appears to steepen from z ~ 7 to z ~ 5, which could indicate the onset of mass quenching or the rise of dust obscuration, a conclusion supported by comparing the observed LFs to a range of theoretical model predictions.
We study the evolution in the number density of the highest mass galaxies over $0.4<z<1.5$ (covering 9 Gyr). We use the Spitzer/HETDEX Exploratory Large-Area (SHELA) Survey, which covers 17.5 $mathrm{deg}^2$ with eight photometric bands spanning 0.3- 4.5 $mu$m within the SDSS Stripe 82 field. This size produces the lowest counting uncertainties and cosmic variance yet for massive galaxies at $zsim1.0$. We study the stellar mass function (SMF) for galaxies with $log(M_ast/M_odot)>10.3$ using a forward-modeling method that fully accounts for statistical and systematic uncertainties on stellar mass. From $z$=0.4 to 1.5 the massive end of the SMF shows minimal evolution in its shape: the characteristic mass ($M^ast$) evolves by less than 0.1 dex ($pm$0.05 dex); the number density of galaxies with $log (M_ast/M_odot) >11$ stays roughly constant at $log (n/mathrm{Mpc}^{-3})$ $simeq$ $-$3.4 ($pm$0.05), then declines to $log (n/mathrm{Mpc}^{-3})$=$-$3.7 ($pm$0.05) at $z$=1.5. We discuss the uncertainties in the SMF, which are dominated by assumptions in the star formation history and details of stellar population synthesis models for stellar mass estimations. For quiescent galaxies, the data are consistent with no (or slight) evolution ($lesssim0.1$ dex) in the characteristic mass nor number density from $zsim 1.5$ to the present. This implies that any mass growth (presumably through dry mergers) of the quiescent massive galaxy population must balance the rate of mass losses from late-stage stellar evolution and the formation of quenching galaxies from the star-forming population. We provide a limit on this mass growth from $z=1.0$ to 0.4 of $Delta M_ast/M_astleq$ 45% (i.e., $simeq0.16$ dex) for quiescent galaxies more massive than $10^{11}$ $M_odot$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا