ﻻ يوجد ملخص باللغة العربية
Band insulators appear in a crystalline system only when the filling -- the number of electrons per unit cell and spin projection -- is an integer. At fractional filling, an insulating phase that preserves all symmetries is a Mott insulator, i.e. it is either gapless or, if gapped, displays fractionalized excitations and topological order. We raise the inverse question -- at an integer filling is a band insulator always possible? Here we show that lattice symmetries may forbid a band insulator even at certain integer fillings, if the crystal is non-symmorphic -- a property shared by a majority of three-dimensional crystal structures. In these cases, one may infer the existence of topological order if the ground state is gapped and fully symmetric. This is demonstrated using a non-perturbative flux threading argument, which has immediate applications to quantum spin systems and bosonic insulators in addition to electronic band structures in the absence of spin-orbit interactions.
We study the competition between Kondo screening and frustrated magnetism on the non-symmorphic Shastry-Sutherland Kondo lattice at a filling of two conduction electrons per unit cell. A previous analysis of this model identified a set of gapless par
In this work, we identify a new class of Z2 topological insulator protected by non-symmorphic crystalline symmetry, dubbed a topological non-symmorphic crystalline insulator. We construct a concrete tight-binding model with the non-symmorphic space g
At partial filling of a flat band, strong electronic interactions may favor gapped states harboring emergent topology with quantized Hall conductivity. Emergent topological states have been found in partially filled Landau levels and Hofstadter bands
We characterize gapless edge modes in translation invariant topological insulators. We show that the edge mode spectrum is a continuous deformation of the spectrum of a certain gluing function defining the occupied state bundle over the Brillouin zon
We present a general approach to obtain effective field theories for topological crystalline insulators whose low-energy theories are described by massive Dirac fermions. We show that these phases are characterized by the responses to spatially depen