ﻻ يوجد ملخص باللغة العربية
We characterize gapless edge modes in translation invariant topological insulators. We show that the edge mode spectrum is a continuous deformation of the spectrum of a certain gluing function defining the occupied state bundle over the Brillouin zone (BZ). Topologically non-trivial gluing functions, corresponding to non-trivial bundles, then yield edge modes exhibiting spectral flow. We illustrate our results for the case of chiral edge states in two dimensional Chern insulators, as well as helical edges in quantum spin Hall states.
The adiabatic insertion of a pi flux into a quantum spin Hall insulator gives rise to localized spin and charge fluxon states. We demonstrate that pi fluxes can be used in exact quantum Monte Carlo simulations to identify a correlated Z_2 topological
We present a general scheme for measuring the bulk properties of non-interacting tight-binding models realized in arrays of coupled photonic cavities. Specifically, we propose to implement a single unit cell of the targeted model with tunable twisted
We construct an example of a 1$d$ quasiperiodically driven spin chain whose edge states can coherently store quantum information, protected by a combination of localization, dynamics, and topology. Unlike analogous behavior in static and periodically
We investigate the emergence of anti-ferromagnetic ordering and its effect on the helical edge states in a quantum spin Hall insulator, in the presence of strong Coulomb interaction. Using dynamical mean-field theory, we show that the breakdown of la
We discover novel topological effects in the one-dimensional Kitaev chain modified by long-range Hamiltonian deformations in the hopping and pairing terms. This class of models display symmetry-protected topological order measured by the Berry/Zak ph